Comparison of the Semtner and Chervin eddy-resolving global ocean model with LUCIE and satellite observations in the Leeuwin Current region

1996 ◽  
Vol 47 (3) ◽  
pp. 509 ◽  
Author(s):  
CJC Reason ◽  
AF Pearce

Output from the Semtner and Chervin eddy-resolving global ocean general circulation model is compared with observations from the Leeuwin Current Interdisciplinary Experiment (LUCIE) and satellite data for the coastal waters of Western Australia. The model output is a snapshot over the domain 9-43�S, 90-120�E for a day in mid July 1987, which is during the season that the Leeuwin Current is expected to be well established along the western and southern coasts of Western Australia. Maximum Leeuwin Current velocities in the model are of the order of 60 cm s-1 and are found in the southern part of the current on the western coast and around into the Great Australian Bight. At depths below about 200 m, and centred near 400 m, there is an equatorward-flowing undercurrent with maximum velocity of order 25 cm s-1. Comparison of temperature and salinity cross-sections with LUCIE observations reveals that the model output for this day exhibits many realistic features. In particular, the model fields display a number of prominent meanders and eddies on the Leeuwin Current as well as further offshore. Consistent with observations, mesoscale features associated with the Leeuwin Current are concentrated between 25�S and the Cape Mentelle region; the flow in the northern part of the Leeuwin Current and the North West Shelf may be too weak to induce eddy-generating instabilities. Prominent in the model output are two large meanders on the Leeuwin Current between 25�S and 29�S and two anticyclonic eddies further downstream; features similar to these are evident in satellite data during winter 1987.

2009 ◽  
Vol 6 (4) ◽  
pp. 7231-7293 ◽  
Author(s):  
A. Yool ◽  
A. Oschlies ◽  
A. J. G. Nurser

Abstract. The future behaviour of the global ocean as a sink for CO2 is significant for climate change, but it is also important to understand its past by quantifying anthropogenic CO2 (Cant) in the ocean today. Unfortunately, this is complicated by the difficulty of deconvoluting Cant from the natural, unperturbed carbon cycle. Nonetheless, a range of techniques have been devised that perform this separation using the information implicit in other physical, biogeochemical and artificial ocean tracers. One such method is the TrOCA approach, whose parameterisation is derived from relationships between biogeochemical tracers within watermasses defined by age tracers such as CFC-11. TrOCA has a number of methodological advantages, and has been shown to be plausible, relative to other methods, in a number of studies. Here we examine the TrOCA approach by using it to deconvolute the known distribution of Cant from an ocean general circulation model (OGCM) simulation of the industrial period (1864–2004). TrOCA is evaluated at local, regional and global scales, with an emphasis on the wider applicability of the parameterisations derived at these scales. Our work finds that the published TrOCA parameterisation performs poorly when extrapolated beyond its calibration region, either with observational data or (especially) model output. Optimising TrOCA parameters using model output as a synthetic dataset leads to some small improvements, but the resulting TrOCA variants still perform poorly. Furthermore, there are large ranges on the optimised TrOCA parameters suggesting that a "universal" TrOCA parameterisation is not achieveable.


2020 ◽  
pp. 1-65 ◽  
Author(s):  
Svenja Ryan ◽  
Caroline C. Ummenhofer ◽  
Glen Gawarkiewicz ◽  
Patrick Wagner ◽  
Markus Scheinert ◽  
...  

AbstractMarine heatwaves along the coast ofWestern Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward, however little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global Ocean General Circulation Model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958-2016, with focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant and extend down to 300m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, more common and persistent during the negative phase of the Interdecadal Pacific Oscillation. It is shown that Ningaloo Niños during La Nina phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere-ocean feedbacks, without a clear imprint on salinity and velocity.


2020 ◽  
Vol 71 (1) ◽  
pp. 43-57
Author(s):  
Kai Logemann ◽  
Leonidas Linardakis ◽  
Peter Korn ◽  
Corinna Schrum

AbstractThe global tide is simulated with the global ocean general circulation model ICON-O using a newly developed tidal module, which computes the full tidal potential. The simulated coastal M2 amplitudes, derived by a discrete Fourier transformation of the output sea level time series, are compared with the according values derived from satellite altimetry (TPXO-8 atlas). The experiments are repeated with four uniform and sixteen irregular triangular grids. The results show that the quality of the coastal tide simulation depends primarily on the coastal resolution and that the ocean interior can be resolved up to twenty times lower without causing considerable reductions in quality. The mesh transition zones between areas of different resolutions are formed by cell bisection and subsequent local spring optimisation tolerating a triangular cell’s maximum angle up to 84°. Numerical problems with these high-grade non-equiangular cells were not encountered. The results emphasise the numerical feasibility and potential efficiency of highly irregular computational meshes used by ICON-O.


2007 ◽  
Vol 20 (7) ◽  
pp. 1305-1315 ◽  
Author(s):  
Masami Nonaka ◽  
Hideharu Sasaki

Abstract Equatorward propagation of temperature–salinity (or spiciness) anomalies on an isopycnal surface emanating from the eastern subtropical South Pacific and their formation mechanism are investigated based on a hindcast simulation with an eddy-resolving quasi-global ocean general circulation model. Because of density-compensating meridional distributions of temperature and salinity, the meridional density gradient is weak at the sea surface in the eastern subtropical South Pacific. With these mean fields, cool sea surface temperature anomalies (SSTAs) can make the outcrop line of an isopycnal surface migrate equatorward more than 5° and induce warm and salty anomalies on the isopycnal surface. Subducted warm, salty anomalies propagate to the equatorial region over approximately 5 yr and may influence equatorial isopycnal temperature–salinity anomalies. Although the associated effects are unclear, if these anomalies could further induce warm eastern equatorial SSTAs that are positively correlated with eastern South Pacific SSTAs, opposite sign temperature–salinity anomalies would be formed in the subtropical South Pacific, and a closed cycle having a decadal time scale might be induced.


2020 ◽  
Author(s):  
Linus Shihora ◽  
Henryk Dobslaw

<p>The Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) product provides a priori information about temporal variations in the Earth's gravity field caused by global mass variability in the atmosphere and ocean and is routinely used as background model in satellite gravimetry. The current version 06 provides Stokes coefficients expanded up to d/o 180 every 3 hours. It is based on ERA-Interim and the ECMWF operational model for the atmosphere, and simulations with the global ocean general circulation model MPIOM consistently forced with the fields from the same atmospheric data-set.</p> <p>We here present preliminary numerical experiments in the development towards a new release 07 of AOD1B. The experiments are performed with the TP10 configuration of MPIOM and include (I) new hourly atmospheric forcing based on the new ERA-5 reanalysis from ECMWF; (II) an improved bathymetry around Antarctica including cavities under the ice shelves; and (III) an explicit implementation of the feedback effects of self-attraction and loading to ocean dynamics. The simulated ocean bottom pressure variability is discussed with respect to AOD1B version 6 as well as in situ ocean observations. A preliminary timeseries of hourly AOD1B-like coefficients for the year 2019 that incorporate the above mentioned improvements will be made available for testing purposes.</p>


Sign in / Sign up

Export Citation Format

Share Document