Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15

2016 ◽  
Vol 28 (4) ◽  
pp. 491 ◽  
Author(s):  
Karen L. Reader ◽  
David G. Mottershead ◽  
Georgia A. Martin ◽  
Robert B. Gilchrist ◽  
Derek A. Heath ◽  
...  

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) act synergistically to regulate granulosa cell proliferation and steroid production in several species. Several non-Sma and mothers against decapentaplegic (SMAD) signalling pathways are involved in the action of murine and ovine GDF9 and BMP15 in combination, with the pathways utilised differing between the two species. The aims of this research were to determine if human GDF9 and BMP15 also act in a synergistic manner to stimulate granulosa cell proliferation and to identify which non-SMAD signalling pathways are activated. Human GDF9 with BMP15 (GDF9 + BMP15) stimulated an increase in 3H-thymidine incorporation (P < 0.001), which was greater than the increase with BMP15 alone, while GDF9 alone had no effect. The stimulation of 3H-thymidine incorporation by GDF9 + BMP15 was reduced by the addition of inhibitors to the SMAD2/3, nuclear factor-KB (NF-KB) and c-Jun N-terminal kinase (JNK) signalling pathways. Inhibitors to the SMAD1/5/8, extracellular signal-regulated kinase mitogen-activated protein kinase (ERK-MAPK) or p38-MAPK pathways had no effect. The addition of the BMP receptor 2 (BMPR2) extracellular domain also inhibited stimulation of 3H-thymidine incorporation by GDF9 + BMP15. In conclusion, human GDF9 and BMP15 act synergistically to stimulate granulosa cell proliferation, a response that also involves species-specific non-SMAD signalling pathways.

Reproduction ◽  
2005 ◽  
Vol 129 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Kenneth P McNatty ◽  
Jennifer L Juengel ◽  
Karen L Reader ◽  
Stan Lun ◽  
Samu Myllymaa ◽  
...  

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular growth and function. The effects of murine (m) and ovine (o) GDF9 as well as oBMP15, alone or together, on 3H-thymidine uptake and progesterone and inhibin production by granulosa cells from rats were determined. Murine GDF9 stimulated thymidine incorporation by granulosa cells whereas oGDF9 and oBMP15 alone had no effect. However, oBMP15 given together with mGDF9 or oGDF9 was very potent in stimulating 3H-thymidine incorporation by granulosa cells with a greater than 3-fold stimulation compared with any growth factor alone. The synergistic effect of oBMP15 and oGDF9 was almost completely blocked by antibodies generated against these growth factors when administered either alone or in combination. While neither GDF9 (murine or ovine) nor oBMP15 were able to modulate FSH-stimulated progesterone production on their own, FSH-stimulated progesterone production by granulosa cells was potently inhibited when BMP15 and GDF9 were administered together. Immunoreactive α-inhibin levels increased more than 15-fold from granulosa cells when BMP15 and GDF9 were given together whereas consistent stimulatory effects of either growth factor alone were not observed. The effects of GDF9 and BMP15, when added together, were different than those observed for the growth factors alone. Therefore, we hypothesize that within the ovary, these oocyte-secreted growth factors co-operate to regulate proliferation and gonadotropin-induced differentiation of granulosa cells in mammals.


Sign in / Sign up

Export Citation Format

Share Document