36 SERIAL SOMATIC CELL NUCLEAR TRANSFER INCREASES PREGNANCY LOSSES IN GOATS

2017 ◽  
Vol 29 (1) ◽  
pp. 125
Author(s):  
M. Yang ◽  
J. Hall ◽  
Q. Meng ◽  
Z. Fan ◽  
I. Polejaeva

Serial cloning by somatic cell nuclear transfer (SCNT) has been successful in several mammalian species. This method can be beneficial for transgenic line expansion or resetting the lifespan of transgenic cells. Previous studies in bovine and porcine have shown a decrease in efficiency over multiple iterations of serial cloning. However, the contradictory data has been reported in mice where no decrease in cloning efficiency was observed after 25 generations of recloning. To our knowledge, no data have been reported investigating the efficiency of serial cloning in goats. The aim of this study was to evaluate whether there is an effect of recloning on goat SCNT efficiency. αMHC-TGF-β1 fetal fibroblast cells (containing transforming growth factor-β under control of a cardiac-specific promoter) were produced by electroporation and used for the first round of SCNT. For serial cloning, we used neonatal fibroblast cells obtained from skin biopsies used as nuclear donors. These cells were collected from the transgenic cloned goats generated by the first round of SCNT. Cumulus-oocyte complexes recovered from abattoir-derived ovaries using slicing technique were matured in vitro for 20 to 24 h. The first polar body and metaphase plate were removed from a cumulus cell-free oocyte, and a donor fibroblast cell was subsequently transferred into the enucleated oocyte. Fused embryos were then activated for 5 min in 5 mM ionomycin followed by 4 h in 2 mM DMAP with 5 mg mL−1 cycloheximide. Activated embryos were cultured in G1 medium with 5 mg mL−1 BSA for 12 h, followed by surgical transfer into the oviducts of recipients synchronized to show oestrus within 12 h of SCNT. In total, 592 and 395 embryos were transferred to 37 and 25 recipient goats, respectively, for the first and second round of SCNT. Pregnancy rate, rate of pregnancy loss, and term rate were analysed by Chi-squared with a 2-tailed P-value. No significant difference was observed in Day 40 pregnancy rates (32.4 v. 36%) and term rates (32.4 v. 20%) between the first round of cloning and the successive recloning. However, the rate of pregnancy losses was significantly greater in recloning group (P < 0.05), with 4 out of 9 pregnancies lost between Day 40 of gestation and term, whereas no pregnancy losses were observed after Day 40 of gestation in the first-round cloning group. The greater pregnancy loss in the recloning procedure might be caused by accumulation of epigenetic errors resulting from incomplete reprogramming. We are assessing the DNA methylation pattern of differentially methylated regions (DMR) of 2 paternally imprinted genes (H19 and IGF2R) in the cloned and recloned goats and expect to see a difference in their imprinted gene DNA methylation pattern, which could explain the greater rate of pregnancy loss in recloned goats.

2018 ◽  
Vol 30 (11) ◽  
pp. 1443 ◽  
Author(s):  
Min Yang ◽  
Iuri Perisse ◽  
Zhiqiang Fan ◽  
Misha Regouski ◽  
Mirella Meyer-Ficca ◽  
...  

Serial cloning by somatic cell nuclear transfer (SCNT) is a critical tool for the expansion of precious transgenic lines or resetting the lifespan of primary transgenic cells for multiple genetic modifications. We successfully produced second-generation cloned goats using donor neonatal fibroblasts from first-generation clones. However, our attempts to produce any third-generation clones failed. SCNT efficiency decreased progressively with the clonal generations. The rate of pregnancy loss was significantly greater in recloning groups (P < 0.05). While no pregnancy loss was observed during the first round of SCNT, 14 out of 21 pregnancies aborted in the second round of SCNT and all pregnancies aborted in the third round of SCNT. In this retrospective study, we also investigated the expression of 21 developmentally important genes in muscle tissue of cloned (G1) and recloned (G2) offspring. The expression of most of these genes in live clones was found to be largely comparable to naturally reproduced control goats, but fibroblast growth factor 10 (FGF10), methyl CpG binding protein 2 (MECP2) and growth factor receptor bound protein 10 (GRB10) were differentially expressed (P < 0.05) in G2 goats compared with G1 and controls. To study the effects of serial cloning on DNA methylation, the methylation pattern of differentially methylated regions in imprinted genes H19 and insulin like growth factor 2 receptor (IGF2R) were also analysed. Aberrant H19 DNA methylation patterns were detected in G1 and G2 clones.


2018 ◽  
Vol 50 (4) ◽  
pp. 1376-1397 ◽  
Author(s):  
Yanhui Zhai ◽  
Zhiren Zhang ◽  
Hao Yu ◽  
Li Su ◽  
Gang Yao ◽  
...  

Background/Aims: DNA methylation and histone modifications are essential epigenetic marks that can significantly affect the mammalian somatic cell nuclear transfer (SCNT) embryo development. However, the mechanisms by which the DNA methylation affects the epigenetic reprogramming have not been fully elucidated. Methods: In our study, we used quantitative polymerase chain reaction (qPCR), Western blotting, immunofluorescence staining (IF) and sodium bisulfite genomic sequencing to examine the effects of RG108, a DNA methyltransferase inhibitor (DNMTi), on the dynamic pattern of DNA methylation and histone modifications in porcine SCNT embryos and investigate the mechanism by which the epigenome status of donor cells’ affects SCNT embryos development and the crosstalk between epigenetic signals. Results: Our results showed that active DNA demethylation was enhanced by the significantly improving expression levels of TET1, TET2, TET3 and 5hmC, and passive DNA demethylation was promoted by the remarkably inhibitory expression levels of DNMT1, DNMT3A and 5mC in embryos constructed from the fetal fibroblasts (FFs) treated with RG108 (RG-SCNT embryos) compared to the levels in embryos from control FFs (FF-SCNT embryos). The signal intensity of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 acetylation (H3K9Ac) was significantly increased and the expression levels of H3K4 methyltransferases were more than 2-fold higher expression in RG-SCNT embryos. RG-SCNT embryos had significantly higher cleavage and blastocyst rates (69.3±1.4%, and 24.72±2.3%, respectively) than FF-SCNT embryos (60.1±2.4% and 18.38±1.9%, respectively). Conclusion: Dynamic changes in DNA methylation caused by RG108 result in dynamic alterations in the patterns of H3K4me3, H3K9Ac and histone H3 lysine 9 trimethylation (H3K9me3), which leads to the activation of embryonic genome and epigenetic modification enzymes associated with H3K4 methylation, and contributes to reconstructing normal epigenetic modifications and improving the developmental efficiency of porcine SCNT embryos.


2015 ◽  
Vol 17 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Hongliang Sun ◽  
Fenghua Lu ◽  
Peng Zhu ◽  
Xiaohua Liu ◽  
Mingming Tian ◽  
...  

2007 ◽  
Vol 75 (2) ◽  
pp. 250-264 ◽  
Author(s):  
Aaron J. Bonk ◽  
Rongfeng Li ◽  
Liangxue Lai ◽  
Yanhong Hao ◽  
Zhonghua Liu ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 104
Author(s):  
N. L. Selokar ◽  
M. Saini ◽  
H. Agrawal ◽  
P. Palta ◽  
M. S. Chauhan ◽  
...  

Cryopreservation of semen allows preservation of somatic cells, which can be used for the production of progeny through somatic cell nuclear transfer (SCNT). This approach could enable restoration of valuable high-genetic-merit progeny-tested bulls, which may be dead but the cryopreserved semen is available. We have successfully produced a live buffalo calf by SCNT using somatic cells isolated from >10 year old frozen semen (Selokar et al. 2014 PLoS One 9, e90755). However, the calf survived only for 12 h, which indicates faulty reprogramming of these cells. The present study was, therefore, carried out to study the effect of treatment with trichostatin A (TSA), an epigenetic modifier, on reprogramming of these cells. Production of cloned embryos and determination of quality and level of epigenetic markers in blastocysts were performed according to the methods described previously (Selokar et al. 2014 PLoS One 9, e90755). To examine the effects of TSA (0, 50, and 75 nM), 10 separate experiments were performed on 125, 175, and 207 reconstructed embryos, respectively. The percentage data were analysed using SYSTAT 12.0 (SPSS Inc., Chicago, IL, USA) after arcsine transformation. Differences between means were analysed by one-way ANOVA followed by Fisher's least significant difference test for significance at P < 0.05. When the reconstructed buffalo embryos produced by hand-made clones were treated with 0, 50, or 75 nM TSA post-electrofusion for 10 h, the cleavage percentage (100.0 ± 0, 94.5 ± 2.3, and 96.1 ± 1.2, respectively) and blastocyst percentage (50.6 ± 2.3, 48.4 ± 2.7, and 48.1 ± 2.6, respectively), total cell number (274.9 ± 17.4, 289.1 ± 30.1, and 317.0 ± 24.2, respectively), and apoptotic index (3.4 ± 0.9, 4.5 ± 1.4, and 5.6 ± 0.7, respectively) in Day 8 blastocysts were not significantly different among different groups. The TSA treatment increased (P < 0.05) the global level of H4K5ac but not that of H3K18a in embryos treated with 50 or 75 nM TSA compared with that in controls. In contrast, the level of H3K27me3 was significantly lower (P < 0.05) in cloned embryos treated with 75 nM TSA than in embryos treated with 50 nM TSA or controls. The ultimate test of the reprogramming potential of any donor cell type is its ability to produce live offspring. To examine the in vivo developmental potential of the 0, 50, or 75 nM TSA treated embryos, we transferred Day 8 blastocysts, 2 each to 5, 6, and 5 recipients, respectively, which resulted in 2 pregnancies from 75 nM TSA treated embryos. However, one pregnancy was aborted in the first trimester and the other in the third trimester. In conclusion, TSA treatment of reconstructed embryos produced from semen-derived somatic cells alters their epigenetic status but does not improve the live birth rate. We are currently optimizing an effective strategy to improve the cloning efficiency of semen-derived somatic cells.


2008 ◽  
Vol 53 (13) ◽  
pp. 1996-2001 ◽  
Author(s):  
Jie Chen ◽  
DongJie Li ◽  
YanQin Liu ◽  
Cui Zhang ◽  
YunPing Dai ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 125
Author(s):  
J. Estrada ◽  
E. Lee ◽  
J. Piedrahita

Donor cell quality is one of the most important factors affecting somatic cell nuclear transfer (SCNT) in mammals. Many studies have been carried out to improve the donor cell characteristics in nuclear transfer, including studies on cell type, cell cycle stage, cell passage, and handling of donor cells before the SCNT. Even though most SCNT work is done with donor cells that have been previously frozen and thawed, no studies have been conducted to evaluate the effect of the cell freezing rate on the SCNT efficiency. The objective of this experiment was to evaluate the effect of the cell freezing method on development of pig SCNT embryos in vitro. Fibroblasts were collected from a 29-day-old female fetus, suspended in DMEM-F12 + 40% fetal bovine serum (FBS) + 10% dimethyl sulfoxide (DMSO), and placed in 1.6-mL cryovials for freezing. Vials were randomly assigned to two treatments: In treatment 1, cells were frozen at a controlled rate of 1�C/min in a programmable machine (P) until -40�C, and then plunged into liquid nitrogen (LN2; -196�C). In treatment 2, the traditional system (T), vials were placed in a styrofoam box and left overnight in a freezer at -80�C. The next day samples were plunged into LN2 (196�C). For each treatment, cells were thawed and cultured until confluence before being used for SCNT. Cells were used at passages 2 and 6. Cumulus-oocyte complexes (COCs) were aspirated from slaughterhouse ovaries and cultured for 39 h in TCM 199 supplemented with 10% porcine follicular fluid (pFF), 5 �g/mL insulin, 10 ng/mL epidermal growth factor (EGF), 0.6 mM cysteine, 0.2 mM pyruvate, 25 �g/mL gentamycin and 5 �g/mL each of equine and human chorionic gonadotropin (eCG and hCG). Oocytes were stained with bisbenzimide and enucleated in manipulation media with 7.5 �g/mL cytochalasin B by removing the first polar body and metaphase plate by means of a 16-�m beveled glass pipette. Cells from each treatment were injected into the perivitelline space of recipient enucleated oocytes and fused by two DC pulses of 140 V for 50 �s in fusion media. The fusion rate was evaluated 1 h later, and reconstructed oocytes were activated by two DC pulses of 120 V for 60 �s. After activation, oocytes were placed in bicarbonate-buffered NCSU-13 with 0.4% BSA and cultured at 38.5�C, 5% CO2 in a humidified atmosphere. Embryos were observed for cell cleavage at Day 2, and blastocyst development rate and cell number counting were done at Day 7 of culture. Every experiment was repeated three times. The temperature descending rate for P was slower and more linear (1�C/min vs. 2�C/min) than for the T method. Fusion rate was not significantly affected (P < 0.05) by the freezing method when they were evaluated either individually at each passage or accumulated regardless the passage (78.9 � 3.6% vs. 79.4 � 6.3%) for P and T, respectively. The same trends were observed for cleavage (61.2 � 5.2% vs. 64.3 � 5.2%), blastocyst development (4.2 � 1.8% vs. 5.0 � 2.8%), and number of cells at the blastocyst stage (19.4 � 3.1 vs. 19.8 � 6.2) for P and T, respectively. The present findings indicate that blastocyst development after SCNT does not differ when fetal fibroblasts donor cells are frozen by the two methods tested.


2008 ◽  
Vol 20 (1) ◽  
pp. 112 ◽  
Author(s):  
H. X. Wei ◽  
K. Zhang ◽  
Y. F. Ma ◽  
Y. Li ◽  
Q. Y. Li ◽  
...  

Accumulating evidence suggests that trichostatin A (TSA), a histone deacetylase inhibitor, can increase the success rate of somatic cloning. The objective of this study was to investigate the effect of 50 nm TSA treatment on the development of porcine somatic cell nuclear transfer (SCNT) and parthenogenically activated (PA) embryos. Cumulus-oocyte complexes were matured in vitro. The oocytes with the first polar body (PB1) were chosen for SCNT, and the rest with PB1 or good morphology were selected for PA by a single 100-μs direct current pulse of 1.6 kV cm–1, the same parameter as for electrical fusion. GFP transgenic fetal fibroblast cells were used as nuclear donors. Data were analyzed using SPSS (13.0; SPSS, Inc., Chicago, IL, USA) with one-way ANOVA. In Experiment 1, immediately after electrical fusion and activation, the reconstructed embryos were randomly cultured in porcine zygote medium 3 (PZM3) with 10 μg mL–1 cytochalasin B (CB) and 10 μg mL–1 cycloheximide (CHX), with either 0 nm (control) or 50 nm TSA for the first 4 h, before being cultured for another 20 h in PZM3 without CB and CHX. After being washed, the embryos were cultured in PZM3 medium without TSA until Day 6 at 39.0°C, 5% CO2, 5%O2, 90% N2, and 100% humidity. The same experimental design was used for PA embryos concurrently. The results showed that there were no significant differences in blastocyst rates for SCNT or PA between control and TSA groups (23.0 ± 6.1% v. 27.9 ± 6.3%; 21.0 ± 1.0% v. 17.5 ± 3.2%, respectively). Neither were there differences in the cell numbers of blastocysts (38.3 ± 5.7 v. 32.2 ± 3.4; 42.2 ± 3.5 v. 39.0 ± 1.9, respectively). In Experiment 2, TSA treatment was prolonged to either 36 or 40 h. The blastocyst rates of SCNT were increased (7.3 ± 1.2% (0 h), 13.3 ± 2.6% (36 h), and 20.0 ± 3.3% (40 h)), whereas those of PA were decreased (46.7 ± 5.0% (0 h), 27.7 ± 6.5% (36 h), and 30.8 ± 6.3% (40 h)). The cell numbers of blastocysts from either SCNT or PA were also decreased (SCNT: 47.5 ± 3.8, 37.5 ± 2.0, and 37.1 ± 3.3; PA: 46.1 ± 1.9, 37.5 ± 1.9, and 39.3 ± 2.2; P < 0.05). In Experiment 3, the cell number and the apoptotic index of Day 5, 6, and 7 PA blastocysts treated with 0 or 50 nm TSA were determined by the terminal deoxynucleotide-mediated nick end labeling (TUNEL) assay (Table 1). The results suggested that TSA treatment probably delayed embryo development, which may be one of the reasons for the lower cell numbers in the TSA-treated group. Table 1. Cell apoptosis of PA blastocyst by TUNEL


2009 ◽  
Vol 21 (1) ◽  
pp. 109 ◽  
Author(s):  
G. S. Ajithkumar ◽  
B. Krishnamohan ◽  
B. C. Sarkhel

For cloning by somatic cell nuclear transfer (SCNT) in goat, there are conflicting reports about the proper time of enucleation after IVM of oocytes, which varied from 20 to 27 h (Das SK et al. 2003 Small Rumin. Res. 48, 217–225; Keefer CL et al. 2002 Biol. Reprod. 66, 199–203; Daniel SM et al. 2007 Small Rumin. Res. 77, 45–50). The present investigation has been undertaken to standardize the optimum time of enucleation after IVM of oocytes. The hypothesis behind the study was that enucleation performed during early stages of maturation maintains the MII plate and polar body (PB) in a closer position and therefore makes it easy to enucleate. To test this hypothesis, caprine COCs were aspirated from slaughterhouse ovaries of goats and good quality oocytes were matured in TCM 199 containing 7.5% FBS supplemented with FSH, LH, and estradiol. Enucleation was performed in four different interval groups after IVM (20–23 h, 23–26 h, 26–29 h and 29–32 h). The enucleation of oocytes was conducted as per method described by (Du F et al. 2006 Theriogenology 65, 642–665). Briefly, IVM oocytes were enucleated by squashing and compressing out the first PB along with 10 to 15% of its surrounding cytoplasm with an enucleation needle through a slit made on the zona pellucida. Successful enucleation was confirmed by fluorescent microscopy of removed ooplasm after staining with Hoechst 33342. The enucleation percentage values after arcsine transformation was analyzed by completely randomized design ANOVA. The result of enucleation at different intervals has been summarized in Table 1. There was no significant difference (P > 0.05) in number of PB observed among the four enucleation groups, however the enucleation percentage decreased significantly (P < 0.05) with increase in enucleation time (70.29% and 70.51% in G1 and G2 v. 59.52% and 55.61% in G3 and G4 respectively). With increase in time of enucleation after maturation the size of perivitelline space increases, causing deviation of PB from spindle, thus the success rate of enucleation is reduced (Song K et al. 2007 Repro. Fertil. Dev. 19, 293–294). In G1 and G2 groups the PB and MII chromosomes are located close together with stronger spindle force that requires minimum ooplasm to be removed with higher percentage of successful enucleation. Hence, it was concluded that G1 and G2 groups may be considered as most efficient for enucleation but the developmental potential of reconstructed oocytes after nuclear transfer in each group needs to be tested (study under progress). Table 1.Enucleation results at different intervals


Sign in / Sign up

Export Citation Format

Share Document