Variations in soil organic carbon for two soil types and six land uses in the Murray Catchment, New South Wales, Australia

Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 631 ◽  
Author(s):  
M. C. Davy ◽  
T. B. Koen

The aim of this study was to investigate variations in soil organic carbon (SOC) for two soil types and six common land uses in the New South Wales Murray Catchment and to explore the factors influencing those variations. Samples were collected from 100 sites on duplex soils (Ustalfs) of the Slopes region, and 100 sites on red-brown earths (Xeralfs) of the Plains region. Stocks of SOC (0–30 cm) across the study area ranged between 22.3 and 86.0 t ha–1, with means (± s.e.) of 42.0 ± 1.3 and 37.9 ± 0.8 t ha–1 for the Slopes and Plains regions, respectively. Higher SOC stocks were present in pasture-dominated land uses compared with mixed cropping in the Slopes region, with particularly high stocks found in pastures at positions on a slope of 7–10%. No significant differences in SOC stocks were identified between land-use groups (pastures or cropping) in the Plains region (<500-mm rainfall zone). Significant correlations were found between SOC and a range of climatic, topographical, and soil physico-chemical variables at both the catchment and sub-regional scale. Soil physico-chemical and topographical factors play an important role in explaining SOC variation and should be incorporated into models that aim to predict SOC sequestration across agricultural landscapes.

Geoderma ◽  
2019 ◽  
Vol 353 ◽  
pp. 213-226 ◽  
Author(s):  
Jonathan Gray ◽  
Senani Karunaratne ◽  
Thomas Bishop ◽  
Brian Wilson ◽  
Manoharan Veeragathipillai

Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 780 ◽  
Author(s):  
Mark Conyers ◽  
Beverley Orchard ◽  
Susan Orgill ◽  
Albert Oates ◽  
Graeme Poile ◽  
...  

Estimating the likely variance in soil organic carbon (OC) at the scale of farm fields or smaller monitoring areas is necessary for developing sampling protocols that allow temporal change to be detected. Given the relatively low anticipated soil OC sequestration rates (&lt;0.5 Mg/ha.0.30 m/year) for dryland agriculture it is important that sampling strategies are designed to reduce any cumulative errors associated with measuring soil OC. The first purpose of this study was to evaluate the spatial variation in soil OC and nitrogen (N), in soil layers to 1.50 m depth at two monitoring sites (Wagga Wagga and Yerong Creek, 0.5 ha each) in southern New South Wales, Australia, where crop and pasture rotations are practiced. Four variogram models were tested (linear, spherical, Gaussian and exponential); however, no single model dominated across sites or depths for OC or N. At both sites, the range was smallest in surface soil, and on a scale suggesting that sowing rows (stubble) may dominate the pattern of spatial dependence, whereas the longer ranges appeared to be associated with horizon boundaries. The second purpose of the study was to obtain an estimate of the population mean with 1%, 5% and 10% levels of precision using the calculated variance. The number of soil cores required for a 1% precision in estimation of the mean soil OC or N was impractical at most depths (&gt;500 per ha). About 30 soil cores per composite sample to 1.50 m depth, each core being at least 10 m apart, would ensure at least an average of 10% precision in the estimation of the mean soil OC at these two sites, which represent the agriculture of the region.


2003 ◽  
Vol 43 (3) ◽  
pp. 261 ◽  
Author(s):  
R. J. Farquharson ◽  
G. D. Schwenke ◽  
J. D. Mullen

Two issues prompted this paper. The first was the measured soil organic carbon decline in fertile northern Australian soils under continual cropping using traditional management practices. We wanted to see whether it was theoretically possible to maintain or improve soil organic carbon concentrations with modern management recommendations. The second was the debate about use of sustainability indicators for on-farm management, so we looked at soil organic carbon as a potential indicator of soil health and investigated whether it was useful in making on-farm crop decisions. The analytical results indicated first that theoretically the observed decline in soil organic carbon concentrations in some northern cracking clay soils can be halted and reversed under continuous cropping sequences by using best practice management. Second, the results and associated discussion give some support to the use of soil organic carbon as a sustainability indicator for soil health. There was a consistent correlation between crop input decisions (fertilisation, stubble management, tillage), outputs (yield and profits) and outcomes (change in soil organic carbon content) in the short and longer term. And this relationship depended to some extent on whether the existing soil organic carbon status was low, medium or high. A stock dynamics relationship is one where the change in a stock (such as soil organic carbon) through time is related not only to the management decisions made and other random influences (such as climatic effects), but also to the concentration or level of the stock itself in a previous time period. Against such a requirement, soil organic carbon was found to be a reasonable measure. However, the inaccuracy in measuring soil organic carbon in the paddock mitigates the potential benefit shown in this analysis of using soil organic carbon as a sustainability indicator.These results are based on a simulation model (APSIM) calibrated for a cracking clay (Vertosol) soil typical of much of the intensively-cropped slopes and plains region of northern New South Wales and southern Queensland, and need to be interpreted in this light. There are large areas of such soils in north-western New South Wales; however, many of these experience lower rainfalls and plant-available soil water capacities than in this case, and the importance of these characteristics must also be considered.


Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 668 ◽  
Author(s):  
Brian R. Wilson ◽  
Vanessa E. Lonergan

We examined soil organic carbon (SOC) concentration (mg g–1) and total organic carbon (TOC) stock (Mg ha–1 to 30 cm soil depth) in three pasture systems in northern New South Wales: improved pasture, native pasture, and lightly wooded pasture, at two sampling times (2009 and 2011). No significant difference was found in SOC or TOC between sample times, suggesting that under the conditions we examined, neither 2 years nor an intervening significant rainfall event was sufficient to change the quantity or our capacity to detect SOC, and neither represented a barrier to soil carbon accounting. Low fertility, lightly wooded pastures had a slightly but significantly lower SOC concentration, particularly in the surface soil layers. However, no significant differences in TOC were detected between the three pasture systems studied, and from a carbon estimation perspective, they represent one, single dataset. A wide range in TOC values existed within the dataset that could not be explained by environmental factors. The TOC was weakly but significantly correlated with soil nitrogen and phosphorus, but a more significant pattern seemed to be the association of high TOC with proportionally larger subsoil (0.1–0.3 m) organic carbon storage. This we attribute to historical, long-term rather than contemporary management. Of the SOC fractions, particulate organic carbon (POC) dominated in the surface layers but diminished with depth, whereas the proportion of humic carbon (HUM) and resistant organic carbon (ROC) increased with soil depth. The POC did not differ between the pasture systems but native pasture had larger quantities of HUM and ROC, particularly in the surface soil layers, suggesting that this pasture system tends to accumulate organic carbon in more resistant forms, presumably because of litter input quality and historical management.


2013 ◽  
Vol 10 (12) ◽  
pp. 8253-8268 ◽  
Author(s):  
M. Muñoz-Rojas ◽  
A. Jordán ◽  
L. M. Zavala ◽  
F. A. González-Peñaloza ◽  
D. De la Rosa ◽  
...  

Abstract. Global climate change, as a consequence of the increasing levels of atmospheric CO2 concentration, may significantly affect both soil organic C storage and soil capacity for C sequestration. CarboSOIL is an empirical model based on regression techniques and developed as a geographical information system tool to predict soil organic carbon (SOC) contents at different depths. This model is a new component of the agro-ecological decision support system for land evaluation MicroLEIS, which assists decision-makers in facing specific agro-ecological problems, particularly in Mediterranean regions. In this study, the CarboSOIL model was used to study the effects of climate change on SOC dynamics in a Mediterranean region (Andalusia, S Spain). Different downscaled climate models were applied based on BCCR-BCM2, CNRMCM3, and ECHAM5 and driven by SRES scenarios (A1B, A2 and B2). Output data were linked to spatial data sets (soil and land use) to quantify SOC stocks. The CarboSOIL model has proved its ability to predict the short-, medium- and long-term trends (2040s, 2070s and 2100s) of SOC dynamics and sequestration under projected future scenarios of climate change. Results have shown an overall trend towards decreasing of SOC stocks in the upper soil sections (0–25 cm and 25–50 cm) for most soil types and land uses, but predicted SOC stocks tend to increase in the deeper soil section (0–75 cm). Soil types as Arenosols, Planosols and Solonchaks and land uses as "permanent crops" and "open spaces with little or no vegetation" would be severely affected by climate change with large decreases of SOC stocks, in particular under the medium–high emission scenario A2 by 2100. The information developed in this study might support decision-making in land management and climate adaptation strategies in Mediterranean regions, and the methodology could be applied to other Mediterranean areas with available soil, land use and climate data.


2016 ◽  
Vol 29 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Susan Elizabeth Orgill ◽  
Jason Robert Condon ◽  
Mark Kenneth Conyers ◽  
Stephen Grant Morris ◽  
Douglas John Alcock ◽  
...  

1997 ◽  
Vol 45 (6) ◽  
pp. 1033 ◽  
Author(s):  
Andrew F. Le Brocque ◽  
Rod T. Buckney

The relationships between stand structure and floristic composition were examined from data collected from 100 quadrats on two soil types: Hawkesbury sandstone and Narrabeen group soils, occurring within Ku-ring-gai Chase National Park, New South Wales. Floristic composition was determined using the frequency of species occurring within nine concentric sub-quadrats of total area 500 m2. Stand structure was determined by a multivariate classification scheme utilising the foliage projective cover of eight strata within each quadrat. The patterns in floristic composition and stand structure were examined through multivariate analyses. Procrustes analysis of non-metric multidimensional scaling ordinations of both the stand structure and composition data showed floristic composition gradients to be well recovered by the structure data. Similar gradients were evident in both vegetation attributes, between and within the two soil types, with the rank order of community types across the ordinations being the same. However, some important differences were evident between the ordinations of floristic composition and stand structure between and within soil types. A number of floristically dissimilar communities exhibited very similar multivariate structural characteristics. In particular, two floristically distinct communities on different soil types were indistinguishable in terms of their structural characteristics. The multivariate analyses suggest a possible convergence of some compositionally distinct communities towards a common structural formation.


Sign in / Sign up

Export Citation Format

Share Document