Foraging behaviour of the endangered Australian skink (Liopholis slateri)

2014 ◽  
Vol 62 (6) ◽  
pp. 477 ◽  
Author(s):  
Megan A. McKinney ◽  
Christine A. Schlesinger ◽  
Chris R. Pavey

The foraging behaviour of the endangered Australian skink (Liopholis slateri) was investigated through detailed observation of a subpopulation of lizards during seven months of sampling. Slater’s skinks primarily exhibited ambush predation, darting from burrow entrances to distances of up to 4 m with a success rate of ~70%. The direction of darting was often straight ahead and almost always in an 180° arc in front of the burrow entrance. Juveniles foraged more frequently and further from burrows than adults. Ants were the most common prey item taken and juveniles targeted small ants as prey more often than adults and often moved further to capture these prey. The spread of introduced buffel grass (Cenchrus ciliaris) in central Australia in recent decades is a possible contributing factor to the decline of L. slateri. A wide field of view appears to be critical for the success of the sit-and-wait foraging strategy employed by the skinks and additional research is required to determine whether further encroachment of buffel grass around burrow systems will impede visibility and directly affect foraging behaviour of these skinks.

Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


2020 ◽  
Vol 13 (6) ◽  
pp. 1-9
Author(s):  
XU Hong-gang ◽  
◽  
HAN Bing ◽  
LI Man-li ◽  
MA Hong-tao ◽  
...  

2012 ◽  
Vol 100 (13) ◽  
pp. 133701 ◽  
Author(s):  
Hewei Liu ◽  
Feng Chen ◽  
Qing Yang ◽  
Pubo Qu ◽  
Shengguan He ◽  
...  

Lab on a Chip ◽  
2010 ◽  
Vol 10 (7) ◽  
pp. 824 ◽  
Author(s):  
Ahmet F. Coskun ◽  
Ting-Wei Su ◽  
Aydogan Ozcan

2018 ◽  
Vol 57 (15) ◽  
pp. 4171 ◽  
Author(s):  
Shingo Kashima ◽  
Masashi Hazumi ◽  
Hiroaki Imada ◽  
Nobuhiko Katayama ◽  
Tomotake Matsumura ◽  
...  

Optik ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 5636-5646 ◽  
Author(s):  
Hyungtae Kim ◽  
Jaehoon Jung ◽  
Joonki Paik

2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2021 ◽  
Vol 11 (3) ◽  
pp. 1200
Author(s):  
Junliu Fan ◽  
Quanying Wu ◽  
Baohua Chen ◽  
Lin Liu ◽  
Lei Chen

A Golay3 multi-mirror telescope (MMT) system is designed in this paper. The fill factor of the Golay3 MMT is derived from the angular resolution of the telescope. An initial configuration is established according to the paraxial optical theory. A three-element aspheric corrector group is designed and placed in the converging light cone to enlarge the field of view (FOV) of the Golay3 MMT. The tolerance analysis for each surface of the Golay3 MMT is conducted using the Monte Carlo method. The design results show the FOV of the Golay3 MMT system can be increased to 1.5° with the insertion of a three-element aspheric corrector group. The results of the tolerance analysis indicate that most tolerances are loose, while some decenter tolerances relating with the aspheric surfaces are relatively tight, but still within an acceptable range.


Sign in / Sign up

Export Citation Format

Share Document