Organization of the Vascular Supply to the Brain of the Toad Bufo-Marinus

1990 ◽  
Vol 38 (4) ◽  
pp. 375
Author(s):  
GK Snyder ◽  
B Gannon ◽  
RV Baudinette

The vasculature of the brain of the cane toad, Bufo marinus, was studied by means of scanning electron microscopy of vascular corrosion casts. The sole arterial supply to the brain is from branches of the internal carotids. The forebrain is supplied by several branches from the rostra1 ramus of the carotids; the caudal ramus gives rise to a single branch which supplies the mesencephalon and cerebellum. The caudal rami fuse to form a single basilar artery which supplies the medulla. The vascular supply to the choroid plexus of the third ventricle is arterial; the vascular supply to the choroid of the fourth ventricle is entirely venous. Microvascular geometry in the toad brain is specific to the region of the brain examined, ranging from simple long capillaries with few anastomotic connections to much shorter, highly convoluted capillaries with many anastomotic connections.

1888 ◽  
Vol 43 (258-265) ◽  
pp. 420-423

The brain of Ceratodus has the following general arrangement:—The membrane which represents the pia mater is of great thickness and toughness; there are two regions where a tela choroidea is developed: one where it covers in the fourth ventricle, and the other where it penetrates through the third ventricle and separates the lateral ventricles from each other. The ventricles are all of large size, and the walls of the lateral ventricles are not completed by nervous tissue. The thalamence-phalon and the mesencephalon are narrow, and the medulla oblongata is wide.


Author(s):  
S. E. Baibakov ◽  
N. S. Bakhareva ◽  
E. K. Gordeeva ◽  
M. V. Yuzhakov ◽  
D. A. Khromov ◽  
...  

Relevance Investigation of the cerebrospinal fluid system of children of different ages, especially pre-school and school periods of childhood, becomes essential, since the further development of the brain and its proper functioning depends on the way it functions. Considering the MRI indications of the elements of the cerebrospinal fluid system of children is important for the development of neurology and neurosurgery, it is necessary to consider gender differences in the brain size and structure.Objective To study the sex differences in the structure of the cerebrospinal fluid system in seven-year-old children.Material and Methods For the study, archival data on the sizes of the lateral ventricles of the brain of 120 children aged 7 (60 boys and 60 girls) were involved, in particular: 1) the length of the anterior horn; 2) the width of the anterior horn; 3) the length of the central part; 4) the width of the central part; 5) the length of the posterior horn; 6) the width of the posterior horn; 7) the length of the lower horn; 8) the anteroposterior size; 9) the distance between the anterior horns; 10) the distance between the posterior horns; 11) the length of the third ventricle; 12) the height of the third ventricle; 13) the length of the aqueduct; 14) the length of the fourth ventricle; 15) the height of the fourth ventricle. The studies were carried out using the method of magnetic resonance imaging. Quantitative indicators were assessed for compliance with the normal distribution using the KolmogorovSmirnov test. The accumulation, correction, systematization of the initial information were carried out in Microsoft Excel 2016. Statistical analysis was carried out using the Statistica 10.0 software (StatSoft Inc., USA). The results were considered statistically significant at p < 0.05.Results The data obtained in the study of the cerebrospinal fluid system in children during their pre-school period of childhood are indicators of the norm and can be used for diagnostic studies in the departments of radiation diagnostics. The bilateral asymmetry of the lateral ventricles of the brain in pre-school children, discovered during the work, is of crucial clinical significance. The morphometric indicators of the elements of the cerebrospinal fluid system should be considered by specialists in the study of brain neuroplasticity.Conclusion Analysis of the obtained in vivo encephalometric data indicates the presence of sexual variability of the brain and parameters of the structures of the cerebrospinal fluid.


2009 ◽  
Vol 17 (8) ◽  
pp. 1015-1024 ◽  
Author(s):  
John Abramyan ◽  
Tariq Ezaz ◽  
Jennifer A. Marshall Graves ◽  
Peter Koopman

Neurosurgery ◽  
2003 ◽  
Vol 53 (2) ◽  
pp. 387-392 ◽  
Author(s):  
Michael B. Horowitz ◽  
Kamal Ramzipoor ◽  
Ajit Nair ◽  
Susan Miller ◽  
George Rappard ◽  
...  

Abstract OBJECTIVE Endoscopic third ventriculostomy has developed into a therapeutic alternative to shunting for the management of carefully selected patients with primarily noncommunicating hydrocephalus. This procedure, however, requires a general anesthetic and necessitates violation of the brain parenchyma and manipulation near vital neural structures to access the floor of the third ventricle. Using two cadavers and off-the-shelf angiographic catheters, we sought to determine whether it was possible to navigate a catheter, angioplasty balloon, and stent percutaneously through the subarachnoid space from the thecal sac into the third ventricle so as to perform a third ventriculostomy from below. METHODS Using biplane angiography and off-the-shelf angiographic catheters along with angioplasty balloons and stents, we were able to pass a stent coaxially from the thecal sac to and across the floor of the third ventricle so as to achieve a third ventriculostomy from below. RESULTS Coaxial catheter techniques allowed for the percutaneous insertion of a stent across the floor of the third ventricle. Ventriculostomy was confirmed by injecting contrast medium into the lateral ventricle and seeing it pass through the stent and into the chiasmatic cistern. CONCLUSION We describe the performance of third ventriculostomies in two cadavers by use of the new concept of percutaneous intradural neuronavigation. This procedure may obviate the need for general anesthetic and minimize the potential for brain and vascular injury, especially if ultimately combined with magnetic resonance fluoroscopy.


2018 ◽  
Vol 17 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Alberto Feletti ◽  
Riccardo Stanzani ◽  
Matteo Alicandri-Ciufelli ◽  
Giuliano Giliberto ◽  
Matteo Martinoni ◽  
...  

AbstractBACKGROUNDDuring surgery in the posterior fossa in the prone position, blood can sometimes fill the surgical field, due both to the less efficient venous drainage compared to the sitting position and the horizontally positioned surgical field itself. In some cases, blood clots can wedge into the cerebral aqueduct and the third ventricle, and potentially cause acute hydrocephalus during the postoperative course.OBJECTIVETo illustrate a technique that can be used in these cases: the use of a flexible scope introduced through the opened roof of the fourth ventricle with a freehand technique allows the navigation of the fourth ventricle, the cerebral aqueduct, and the third ventricle in order to explore the cerebrospinal fluid pathways and eventually aspirate blood clots and surgical debris.METHODSWe report on one patient affected by an ependymoma of the fourth ventricle, for whom we used a flexible neuroendoscope to explore and clear blood clots from the cerebral aqueduct and the third ventricle after the resection of the tumor in the prone position. Blood is aspirated with a syringe using the working channel of the scope as a sucker.RESULTSA large blood clot that was lying on the roof of the third ventricle was aspirated, setting the ventricle completely free. Other clots were aspirated from the right foramen of Monro and from the optic recess.CONCLUSIONWe describe this novel technique, which represents a safe and efficient way to clear the surgical field at the end of posterior fossa surgery in the prone position. The unusual endoscopic visual perspective and instrument maneuvers are easily handled with proper neuroendoscopic training.


Sign in / Sign up

Export Citation Format

Share Document