scholarly journals RNA-assisted catalysis in a protein enzyme: The 2′-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase

2008 ◽  
Vol 105 (46) ◽  
pp. 17748-17753 ◽  
Author(s):  
Anand Minajigi ◽  
Christopher S. Francklyn

Aminoacyl-tRNA synthetases (aaRSs) join amino acids to 1 of 2 terminal hydroxyl groups of their cognate tRNAs, thereby contributing to the overall fidelity of protein synthesis. In class II histidyl-tRNA synthetase (HisRS) the nonbridging Sp-oxygen of the adenylate is a potential general base for aminoacyl transfer. To test for conservation of this mechanism in other aaRSs and the role of terminal hydroxyls of tRNA in aminoacyl transfer, we investigated the class II Escherichia coli threonyl-tRNA synthetase (ThrRS). As with other class II aaRSs, the rate-determining step for ThrRS is amino acid activation. In ThrRS, however, the 2′-OH of A76 of tRNAThr and a conserved active-site histidine (His-309) collaborate to catalyze aminoacyl transfer by a mechanism distinct from HisRS. Conserved residues in the ThrRS active site were replaced with alanine, and then the resulting mutant proteins were analyzed by steady-state and rapid kinetics. Nearly all mutants preferentially affected the amino acid activation step, with only a modest effect on aminoacyl transfer. By contrast, H309A ThrRS decreased transfer 242-fold and imposed a kinetic block to CCA accommodation. His-309 hydrogen bonds to the 2′-OH of A76, and substitution of the latter by hydrogen or fluorine decreased aminoacyl transfer by 763- and 94-fold, respectively. The proton relay mechanism suggested by these data to promote aminoacylation is reminiscent of the NAD+-dependent mechanisms of alcohol dehydrogenases and sirtuins and the RNA-mediated catalysis of the ribosomal peptidyl transferase center.

2009 ◽  
Vol 284 (31) ◽  
pp. 20753-20762 ◽  
Author(s):  
Ethan Guth ◽  
Mindy Farris ◽  
Michael Bovee ◽  
Christopher S. Francklyn

2019 ◽  
Vol 295 (5) ◽  
pp. 1402-1410 ◽  
Author(s):  
Nien-Ching Han ◽  
Tammy J. Bullwinkle ◽  
Kaeli F. Loeb ◽  
Kym F. Faull ◽  
Kyle Mohler ◽  
...  

β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.


2005 ◽  
Vol 354 (3) ◽  
pp. 739 ◽  
Author(s):  
Takatsugu Kobayashi ◽  
Tetsuo Takimura ◽  
Ryo Sekine ◽  
Vincent P. Kelly ◽  
Kenji Kamata ◽  
...  

2002 ◽  
Vol 316 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Richard S.A Lipman ◽  
Penny J Beuning ◽  
Karin Musier-Forsyth ◽  
Ya-Ming Hou

Sign in / Sign up

Export Citation Format

Share Document