scholarly journals Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma

2008 ◽  
Vol 105 (51) ◽  
pp. 20458-20463 ◽  
Author(s):  
R. W. K. Chiu ◽  
K. C. A. Chan ◽  
Y. Gao ◽  
V. Y. M. Lau ◽  
W. Zheng ◽  
...  
2012 ◽  
Vol 58 (10) ◽  
pp. 1467-1475 ◽  
Author(s):  
Kwan-Wood G Lam ◽  
Peiyong Jiang ◽  
Gary J W Liao ◽  
K C Allen Chan ◽  
Tak Y Leung ◽  
...  

Abstract BACKGROUND A genomewide genetic and mutational profile of a fetus was recently determined via deep sequencing of maternal plasma DNA. This technology could have important applications for noninvasive prenatal diagnosis (NIPD) of many monogenic diseases. Relative haplotype dosage (RHDO) analysis, a core step of this procedure, would allow one to elucidate the maternally inherited half of the fetal genome. For clinical applications, the cost and complexity of data analysis might be reduced via targeted application of this approach to selected genomic regions containing disease-causing genes. There is thus a need to explore the feasibility of performing RHDO analysis in a targeted manner. METHODS We performed target enrichment by using solution-phase hybridization followed by massively parallel sequencing of the β-globin gene region in 2 families undergoing prenatal diagnosis for β-thalassemia. We used digital PCR strategies to physically deduce parental haplotypes. Finally, we performed RHDO analysis with target-enriched sequencing data and parental haplotypes to reveal the β-thalassemic status for the fetuses. RESULTS A mean sequencing depth of 206-fold was achieved in the β-globin gene region by targeted sequencing of maternal plasma DNA. RHDO analysis was successful for the sequencing data obtained from the target-enriched samples, including a region in one of the families in which the parents had similar haplotype structures. Data analysis revealed that both fetuses were heterozygous carriers of β-thalassemia. CONCLUSIONS Targeted sequencing of maternal plasma DNA for NIPD of monogenic diseases is feasible.


2010 ◽  
Vol 56 (3) ◽  
pp. 459-463 ◽  
Author(s):  
Rossa WK Chiu ◽  
Hao Sun ◽  
Ranjit Akolekar ◽  
Christopher Clouser ◽  
Clarence Lee ◽  
...  

Abstract Background: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content. Methods: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a sequencing-by-ligation approach. We calculated the genomic representations (GRs) of sequenced reads from each chromosome and their associated measurement CVs and compared the GRs of chromosome 21 (chr21) for the euploid and T21 pregnancies. Results: We obtained a median of 12 × 106 unique reads (21% of the total reads) per sample. The GRs deviated from those expected for some chromosomes but in a manner different from that previously reported for the sequencing-by-synthesis approach. Measurements of the GRs for chromosomes 18 and 13 were less precise than for chr21. z Scores of the GR of chr21 were increased in the T21 pregnancies, compared with the euploid pregnancies. Conclusions: Massively parallel sequencing-by-ligation of maternal plasma DNA was effective in identifying T21 fetuses noninvasively. The quantitative biases observed among the GRs of certain chromosomes were more likely based on analytical factors than biological factors. Further research is needed to enhance the precision for measuring for the representations of chromosomes 18 and 13.


2015 ◽  
Vol 61 (6) ◽  
pp. 829-837 ◽  
Author(s):  
Seong-Keun Yoo ◽  
Byung Chan Lim ◽  
Jiyoung Byeun ◽  
Hee Hwang ◽  
Ki Joong Kim ◽  
...  

Abstract BACKGROUND Noninvasive prenatal diagnosis of monogenic disorders using maternal plasma and targeted massively parallel sequencing is being investigated actively. We previously demonstrated that comprehensive genetic diagnosis of a Duchenne muscular dystrophy (DMD) patient is feasible using a single targeted sequencing platform. Here we demonstrate the applicability of this approach to carrier detection and noninvasive prenatal diagnosis. METHODS Custom solution-based target enrichment was designed to cover the entire dystrophin (DMD) gene region. Targeted massively parallel sequencing was performed using genomic DNA from 4 mother and proband pairs to test whether carrier status could be detected reliably. Maternal plasma DNA at varying gestational weeks was collected from the same families and sequenced using the same targeted platform to predict the inheritance of the DMD mutation by their fetus. Overrepresentation of an inherited allele was determined by comparing the allele fraction of 2 phased haplotypes after examining and correcting for the recombination event. RESULTS The carrier status of deletion/duplication and point mutations was detected reliably through using a single targeted massively parallel sequencing platform. Whether the fetus had inherited the DMD mutation was predicted correctly in all 4 families as early as 6 weeks and 5 days of gestation. In one of these, detection of the recombination event and reconstruction of the phased haplotype produced a correct diagnosis. CONCLUSIONS Noninvasive prenatal diagnosis of DMD is feasible using a single targeted massively parallel sequencing platform with tiling design.


2009 ◽  
Vol 55 (12) ◽  
pp. 2144-2152 ◽  
Author(s):  
Thomas Hahn ◽  
Klaus S Drese ◽  
Ciara K O'Sullivan

Abstract Background: Routine prenatal diagnosis of chromosomal anomalies is based on invasive procedures, which carry a risk of approximately 1%–2% for loss of pregnancy. An alternative to these inherently invasive techniques is to isolate fetal DNA circulating in the pregnant mother’s plasma. Free fetal DNA circulates in maternal plasma primarily as fragments of lengths <500 bp, with a majority being <300 bp. Separating these fragments by size facilitates an increase in the ratio of fetal to maternal DNA. Methods: We describe our development of a microsystem for the enrichment and isolation of cell-free fetal DNA from maternal plasma. The first step involves a high-volume extraction from large samples of maternal plasma. The resulting 80-μL eluate is introduced into a polymeric microsystem within which DNA is trapped and preconcentrated. This step is followed by a transient isotachophoresis step in which the sample stacks within a neighboring channel for subsequent size separation and is recovered via an outlet at the end of the channel. Results: Recovered fractions of fetal DNA were concentrated 4–8 times over those in preconcentration samples. With plasma samples from pregnant women, we detected the fetal SRY gene (sex determining region Y) exclusively in the fragment fraction of <500 bp, whereas a LEP gene (leptin) fragment was detected in both the shorter and longer recovery fractions. Conclusions: The microdevice we have described has the potential to open new perspectives in noninvasive prenatal diagnosis by facilitating the isolation of fetal DNA from maternal plasma in an integrated, inexpensive, and easy-to-use microsystem.


2008 ◽  
Vol 54 (3) ◽  
pp. 461-466 ◽  
Author(s):  
Y M Dennis Lo ◽  
Rossa W K Chiu

Abstract Background: The discovery of circulating cell-free fetal nucleic acids in maternal plasma has opened up new possibilities for noninvasive prenatal diagnosis. The potential application of this technology for the noninvasive prenatal detection of fetal chromosomal aneuploidies is an aspect of this field that is being actively investigated. The main challenge of work in this area is the fact that cell-free fetal nucleic acids represent only a minor fraction of the total nucleic acids in maternal plasma. Methods and Results: We performed a review of the literature, which revealed that investigators have applied methods based on the physical and molecular enrichment of fetal nucleic acid targets from maternal plasma. The former includes the use of size fractionation of plasma DNA and the use of the controversial formaldehyde treatment method. The latter has been achieved through the development of fetal epigenetic and fetal RNA markers. The aneuploidy status of the fetus has been explored through the use of allelic ratio analysis of plasma fetal epigenetic and RNA markers. Digital PCR has been shown to offer high precision for allelic ratio and relative chromosome dosage analyses. Conclusions: After a decade of work, the theoretical and practical feasibility of prenatal fetal chromosomal aneuploidy detection by plasma nucleic acid analysis has been demonstrated in studies using small sample sets. Larger scale independent studies will be needed to validate these initial observations. If these larger scale studies prove successful, it is expected that with further development of new fetal DNA/RNA markers and new analytical methods, molecular noninvasive prenatal diagnosis of the major chromosomal aneuploidies could become a routine practice in the near future.


2010 ◽  
Vol 56 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Yu K Tong ◽  
Shengnan Jin ◽  
Rossa WK Chiu ◽  
Chunming Ding ◽  
KC Allen Chan ◽  
...  

Abstract Background: The use of fetal DNA in maternal plasma for noninvasive prenatal diagnosis of trisomy 21 (T21) is an actively researched area. We propose a novel method of T21 detection that combines fetal-specific epigenetic and genetic markers. Methods: We used combined bisulfite restriction analysis to search for fetal DNA markers on chromosome 21 that were differentially methylated in the placenta and maternal blood cells and confirmed any target locus with bisulfite sequencing. We then used methylation-sensitive restriction endonuclease digestion followed by microfluidics digital PCR analysis to investigate the identified marker. Chromosome-dosage analysis was performed by comparing the dosage of this epigenetic marker with that of the ZFY (zinc finger protein, Y-linked) gene on chromosome Y. Results: The putative promoter of the HLCS (holocarboxylase synthetase) gene was hypermethylated in the placenta and hypomethylated in maternal blood cells. A chromosome-dosage comparison of the hypermethylated HLCS and ZFY loci could distinguish samples of T21 and euploid placental DNA. Twenty-four maternal plasma samples from euploid pregnancies and 5 maternal plasma samples from T21 pregnancies were analyzed. All but 1 of the euploid samples were correctly classified. Conclusions: The epigenetic–genetic chromosome-dosage approach is a new method for noninvasive prenatal detection of T21. The epigenetic part of the analysis can be applied to all pregnancies. Because the genetic part of the analysis uses paternally inherited, fetal-specific genetic markers that are abundant in the genome, broad population coverage should be readily achievable. This approach has the potential to become a generally usable technique for noninvasive prenatal diagnosis.


Sign in / Sign up

Export Citation Format

Share Document