scholarly journals Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol

2010 ◽  
Vol 107 (15) ◽  
pp. 6687-6692 ◽  
Author(s):  
J. L. Axson ◽  
K. Takahashi ◽  
D. O. De Haan ◽  
V. Vaida
Keyword(s):  
1994 ◽  
Vol 358 ◽  
Author(s):  
Eric J. Lee ◽  
James S. Ha ◽  
Michael J. Sailor

ABSTRACTThe porous silicon (PS) surface is derivatized with ethanol, triethylsilanol and formic acid as well as oxidized with water. The two reactions used to prepare these surfaces are discussed, and FTIR spectra of the products are presented. Surface-modified PS retains 10-40% of its original photoluminescence. PS-derivatives display reversible luminescence quenching by gas phase water, ethanol, acetonitrile and benzene. The extent of quenching varies with different PS-derivatives depending on the interaction of the chemical vapor with the modified PS surfaces.


1991 ◽  
Vol 46 (5) ◽  
pp. 426-432
Author(s):  
Zdenek Slanina

AbstractVarious refined potentials describing the intra- and inter-molecular force fields of water molecules arc used to calculate the properties of the gas-phase water dimer. The intra-molecular parts have been taken from spectroscopic or quantum-chemical sources. The minimum energy structure was found iteratively using the first derivatives of the potential; the force-constant matrix was constructed by numerical difierentation. A quite close agreement between the Bopp-Jancso-Heinzinger and the Matsuoka-Clementi-Yoshimine-Lie potentials is found. The treatment is applied to seven observed water-dimer isotopomeric isomerizations


2014 ◽  
Vol 114 (12) ◽  
pp. 760-768 ◽  
Author(s):  
Peng Li ◽  
Wenxia Niu ◽  
Tao Gao ◽  
Hongyan Wang

2005 ◽  
Vol 5 (10) ◽  
pp. 2679-2689 ◽  
Author(s):  
J. W. Adams ◽  
D. Rodriguez ◽  
R. A. Cox

Abstract. The uptake of SO2 onto Saharan mineral dust from the Cape Verde Islands was investigated using a coated wall flow tube coupled to a mass spectrometer. The rate of loss of SO2 to the dust coating was measured and uptake coefficients were determined using the measured BET surface area of the sample. The uptake of SO2, with an initial concentration between (2-40)x1010molecule cm-3 (0.62-12 µTorr), was found to be strongly time dependent over the first few hundred seconds of an experiment, with an initial uptake γ0,BET of (6.6±0.8)x10-5 (298 K), declining at longer times. The amount of SO2 adsorbed on the dust samples was measured over a range of SO2 concentrations and mineral dust loadings. The uptake of SO2 was found to be up to 98% irreversible over the timescale of these investigations. Experiments were also performed at 258 K, at a relative humidity of 27% and at 298 K in the presence of ozone. The initial uptake and the amount of SO2 taken up per unit area of BET dust surface was the same within error, irrespective of the conditions used; however the presence of ozone reduced the amount of SO2 released back into the gas-phase per unit area once exposure of the surface ended. Multiple uptakes to the same surface revealed a loss of surface reactivity, which did not return if the samples were exposed to gas-phase water, or left under vacuum overnight. A mechanism which accounts for the observed uptake behaviour is proposed and numerically modelled, allowing quantitative estimates of the rate and amount of SO2 removal in the atmosphere to be estimated. Removal of SO2 by mineral dust is predicted to be significant at high dust loadings.


Sign in / Sign up

Export Citation Format

Share Document