scholarly journals A quantitative version of the commutator theorem for zero trace matrices

2012 ◽  
Vol 110 (48) ◽  
pp. 19251-19255 ◽  
Author(s):  
W. B. Johnson ◽  
N. Ozawa ◽  
G. Schechtman
Author(s):  
Brian Street

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.


2000 ◽  
Vol 62 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Michael Revers

A well-known result due to S.N. Bernstein is that sequence of Lagrange interpolation polynomials for |x| at equally spaced nodes in [−1, 1] diverges everywhere, except at zero and the end-points. In this paper we present a quantitative version concerning the divergence behaviour of the Lagrange interpolants for |x|3 at equidistant nodes. Furthermore, we present the exact rate of convergence for the interpolatory parabolas at the point zero.


2015 ◽  
Vol 64 (2) ◽  
pp. 156-168 ◽  
Author(s):  
Dijana Ilišević ◽  
Aleksej Turnšek
Keyword(s):  

2019 ◽  
Vol 62 (1) ◽  
pp. 71-74
Author(s):  
Tadeusz Figiel ◽  
William Johnson

AbstractA precise quantitative version of the following qualitative statement is proved: If a finite-dimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.


2018 ◽  
Vol 182 ◽  
pp. 02039
Author(s):  
David Ellerman

Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences, and distinguishability, and is formalized using the distinctions (“dits”) of a partition (a pair of points distinguished by the partition). All the definitions of simple, joint, conditional, and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this talk is to outline the direct generalization to quantum logical information theory that similarly focuses on the pairs of eigenstates distinguished by an observable, i.e., “qudits” of an observable. The fundamental theorem for quantum logical entropy and measurement establishes a direct quantitative connection between the increase in quantum logical entropy due to a projective measurement and the eigenstates (cohered together in the pure superposition state being measured) that are distinguished by the measurement (decohered in the postmeasurement mixed state). Both the classical and quantum versions of logical entropy have simple interpretations as “two-draw” probabilities for distinctions. The conclusion is that quantum logical entropy is the simple and natural notion of information for quantum information theory focusing on the distinguishing of quantum states.


Sign in / Sign up

Export Citation Format

Share Document