scholarly journals Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization

2016 ◽  
Vol 113 (18) ◽  
pp. 5059-5064 ◽  
Author(s):  
Charles B. Smarr ◽  
Woon Teck Yap ◽  
Tobias P. Neef ◽  
Ryan M. Pearson ◽  
Zoe N. Hunter ◽  
...  

Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization.

2010 ◽  
Vol 33 (3) ◽  
pp. 196 ◽  
Author(s):  
Xia Ke ◽  
Jiangju Huang ◽  
Quan Chen ◽  
Suling Hong ◽  
Daoyin Zhu

Purpose. Allergic asthma is characterized by chronic airway inflammation and airway hyperresponsiveness driven by allergen-specific T helper (Th)2 cells. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination has been documented to suppress Th2 responses and allergic airway inflammation in animal models. Since interleukin (IL)-12 is capable of inhibiting Th2 responses, we sought to investigate whether IL-12 could function as an adjuvant to increase the efficacy of BCG vaccination against allergic asthma. Methods. BALB/c neonatal mice (24 mice, 48-72 h old) were randomly divided into 3 subgroups (n = 8 for each group) to be immunized with PBS (control) or BCG with or without DNA plasmid-expressing IL-12. All of the mice were then sensitized and provoked with ovalbumin (OVA) to establish a model of allergic asthma. Results. Mice vaccinated with BCG alone showed a significant reduction in airway inflammation, percentage of eosinophils in bronchoalveolar lavage (BAL) fluid, and serum OVA-specific immunoglobulin E (IgE) levels in comparison with control animals. The suppressive effects of BCG were substantially augmented by the combination with IL-12. Furthermore, a decreased IL-4 and increased interferon-gamma (IFN-γ) production in BAL fluid were observed in animals inoculated with BCG alone or with IL-12 relative to control animals. Conclusion. Our data indicate that the combined vaccination with BCG and IL-12 yields a favorable outcome in prevention of experimental allergic airway inflammation, which is likely mediated through triggering a shift from a Th2 response to a Th1 response.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Vinicius F. Carvalho ◽  
Emiliano O. Barreto ◽  
Ana Carolina S. Arantes ◽  
Magda F. Serra ◽  
Tatiana Paula T. Ferreira ◽  
...  

Previous studies described that allergic diseases, including asthma, occur less often than expected in patients with type 1 diabetes. Here, we investigated the influence of diabetes on allergic airway inflammation in a model of experimental asthma in mice. Diabetes was induced by intravenous injection of alloxan into 12 h-fasted A/J mice, followed by subcutaneous sensitization with ovalbumin (OVA) and aluminum hydroxide (Al(OH)3), on days 5 and 19 after diabetes induction. Animals were intranasally challenged with OVA (25 μg), from day 24 to day 26. Alloxan-induced diabetes significantly attenuated airway inflammation as attested by the lower number of total leukocytes in the bronchoalveolar lavage fluid, mainly neutrophils and eosinophils. Suppression of eosinophil infiltration in the peribronchiolar space and generation of eosinophilotactic mediators, such as CCL-11/eotaxin, CCL-3/MIP-1α, and IL-5, were noted in the lungs of diabetic sensitized mice. In parallel, reduction of airway hyperreactivity (AHR) to methacholine, mucus production, and serum IgE levels was also noted under diabetic conditions. Our findings show that alloxan diabetes caused attenuation of lung allergic inflammatory response in A/J mice, by a mechanism possibly associated with downregulation of IgE antibody production.


2003 ◽  
Vol 71 (5) ◽  
pp. 2607-2614 ◽  
Author(s):  
Deborah Negrão-Corrêa ◽  
Micheline R. Silveira ◽  
Cynthia M. Borges ◽  
Danielle G. Souza ◽  
Mauro M. Teixeira

ABSTRACT The prevalence of allergic diseases such as asthma has increased markedly over the past few decades. To evaluate the possible mutual influence of helminth infection and allergy, the combined effects of experimental allergic airway inflammation and infection with Strongyloides venezuelensis on various parasitological and inflammatory indices were evaluated in the rat. A challenge of immunized rats with aerosolized ovalbumin (OVA) resulted in eosinophilic inflammation that peaked 48 h after the challenge and was accompanied by airway hyperresponsiveness (AHR) to an intravenous acetylcholine challenge. S. venezuelensis infection concomitant with an OVA challenge of immunized rats resulted in prolonged pulmonary inflammation with increased eosinophil infiltration in bronchoalveolar lavage fluid but not in the lung tissue. These rats also showed a significant parasite burden reduction, especially during parasite migration through the lungs. However, the fecundity rates of worms that reached the intestine were similar in allergic and nonallergic animals. Despite airway inflammation, the increased responsiveness of the airways in the experimental asthma model was suppressed during parasite migration through the lungs (2 days). In contrast, parasite-induced AHR was unchanged 5 days after infection in immunized and challenged rats. In conclusion, infection with S. venezuelensis interfered with the onset of AHR following an antigen challenge of immunized rats. The ability of parasites to switch off functional airway responses is therapeutically relevant because we may learn from parasites how to modulate lung function and, hence, the AHR characteristic of asthmatic patients.


2008 ◽  
Vol 295 (3) ◽  
pp. L412-L421 ◽  
Author(s):  
Thomas H. Thatcher ◽  
Randi P. Benson ◽  
Richard P. Phipps ◽  
Patricia J. Sime

Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m3 total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m3 TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases.


Author(s):  
Punyada Suchiva ◽  
Toshiro Takai ◽  
Seiji Kamijo ◽  
Natsuko Maruyama ◽  
Takehiko Yokomizo ◽  
...  

<b><i>Introduction:</i></b> Epicutaneous (e.c.) allergen exposure is an important route of sensitization toward allergic diseases in the atopic march. Allergen sources such as house dust mites contain proteases that involve in the pathogenesis of allergy. Prostanoids produced via pathways downstream of cyclooxygenases (COXs) regulate immune responses. Here, we demonstrate effects of COX inhibition with nonsteroidal anti-inflammatory drugs (NSAIDs) on e.c. sensitization to protease allergen and subsequent airway inflammation in mice. <b><i>Methods:</i></b> Mice were treated with NSAIDs during e.c. sensitization to a model protease allergen, papain, and/or subsequent intranasal challenge with low-dose papain. Serum antibodies, cytokine production in antigen-restimulated skin or bronchial draining lymph node (DLN) cells, and airway inflammation were analyzed. <b><i>Results:</i></b> In e.c. sensitization, treatment with a nonspecific COX inhibitor, indomethacin, promoted serum total and papain-specific IgE response and Th2 and Th17 cytokine production in skin DLN cells. After intranasal challenge, treatment with indomethacin promoted allergic airway inflammation and Th2 and Th17 cytokine production in bronchial DLN cells, which depended modestly or largely on COX inhibition during e.c. sensitization or intranasal challenge, respectively. Co-treatment with COX-1-selective and COX-2-selective inhibitors promoted the skin and bronchial DLN cell Th cytokine responses and airway inflammation more efficiently than treatment with either selective inhibitor. <b><i>Conclusion:</i></b> The results suggest that the overall effects of COX downstream prostanoids are suppressive for development and expansion of not only Th2 but also, unexpectedly, Th17 upon exposure to protease allergens via skin or airways and allergic airway inflammation.


2011 ◽  
Vol 187 (6) ◽  
pp. 3155-3164 ◽  
Author(s):  
Shadi Swaidani ◽  
Katarzyna Bulek ◽  
Zizhen Kang ◽  
Muhammet Fatih Gulen ◽  
Caini Liu ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Céline Pellaton ◽  
Sophie Nutten ◽  
Anne-Christine Thierry ◽  
Caroline Boudousquié ◽  
Nathalie Barbier ◽  
...  

Introduction. Preclinical and clinical evidences for a role of oral probiotics in the management of allergic diseases are emerging.Aim. We aimed at testing the immunomodulatory effects of intranasalversusintragastric administration ofLactobacillus paracaseiNCC2461 in a mouse model of allergic airway inflammation and the specificity of different probiotics by comparingL. paracaseiNCC2461 toLactobacillus plantarumNCC1107.Methods.L. paracaseiNCC2461 orL. plantarumNCC1107 strains were administered either intragastrically (NCC2461) or intranasally (NCC2461 or NCC1107) to OVA-sensitized mice challenged with OVA aerosols. Inflammatory cell recruitment into BALF, eotaxin and IL-5 production in the lungs were measured.Results. IntranasalL. paracaseiNCC2461 efficiently protected sensitized mice upon exposure to OVA aerosols in a dose-dependent manner as compared to control mice. Inflammatory cell number, eotaxin and IL-5 were significantly reduced in BALF. Intranasal supplementation ofL. paracaseiNCC2461 was more potent than intragastric application in limiting the allergic response and possibly linked to an increase in T regulatory cells in the lungs. Finally, intranasalL. plantarumNCC1107 reduced total and eosinophilic lung inflammation, but increased neutrophilia and macrophages infiltration.Conclusion. A concerted selection of intervention schedule, doses, and administration routes (intranasal versus intragastric) may markedly contribute to modulate airway inflammation in a probiotic strain-specific manner.


Sign in / Sign up

Export Citation Format

Share Document