scholarly journals Scaling laws predict global microbial diversity

2016 ◽  
Vol 113 (21) ◽  
pp. 5970-5975 ◽  
Author(s):  
Kenneth J. Locey ◽  
Jay T. Lennon

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6⋅106 species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (1012) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.

Author(s):  
Kenneth J Locey ◽  
Jay T Lennon

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ~35,000 sites and ~5.6·106 species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we demonstrate similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upwards one trillion (1012) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.


2016 ◽  
Author(s):  
Kenneth J Locey ◽  
Jay T Lennon

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ~35,000 sites and ~5.6·106 species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we demonstrate similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upwards one trillion (1012) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.


Author(s):  
Kenneth J Locey ◽  
Jay T Lennon

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ~35,000 sites and ~5.6·106 species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we demonstrate similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upwards one trillion (1012) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.


Author(s):  
Kenneth J Locey ◽  
Jay T Lennon

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ~35,000 sites and ~5.6·106 species, we demonstrate similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of species abundance, we predict that Earth is home to ~1012 microbial species. This estimate is also supported by the microbial richness scaling relationship we derive from the largest ever inventory of high-throughput molecular data. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.


2016 ◽  
Author(s):  
William R Shoemaker ◽  
Kenneth J Locey ◽  
Jay T Lennon

Microorganisms are the most abundant, diverse, and functionally important organisms on Earth. Over the past decade, microbial ecologists have produced the largest ever community datasets. However, these data are rarely used to uncover law-like patterns of commonness and rarity, test theories of biodiversity, or explore unifying explanations for the structure of microbial communities. Using a global-scale compilation of >20,000 samples from environmental, engineered, and host-related ecosystems, we test the power of competing theories to predict distributions of microbial abundance and diversity-abundance scaling laws. We show that these patterns are best explained by the synergistic interaction of stochastic processes that are captured by lognormal dynamics. We demonstrate that lognormal dynamics have predictive power across scales of abundance, a criterion that is essential to biodiversity theory. By understanding the multiplicative and stochastic nature of ecological processes, scientists can better understand the structure and dynamics of Earth’s largest and most diverse ecological systems.


Author(s):  
William R Shoemaker ◽  
Kenneth J Locey ◽  
Jay T Lennon

Microorganisms are the most abundant, diverse, and functionally important organisms on Earth. Over the past decade, microbial ecologists have produced the largest ever community datasets. However, these data are rarely used to uncover law-like patterns of commonness and rarity, test theories of biodiversity, or explore unifying explanations for the structure of microbial communities. Using a global-scale compilation of >20,000 samples from environmental, engineered, and host-related ecosystems, we test the power of competing theories to predict distributions of microbial abundance and diversity-abundance scaling laws. We show that these patterns are best explained by the synergistic interaction of stochastic processes that are captured by lognormal dynamics. We demonstrate that lognormal dynamics have predictive power across scales of abundance, a criterion that is essential to biodiversity theory. By understanding the multiplicative and stochastic nature of ecological processes, scientists can better understand the structure and dynamics of Earth’s largest and most diverse ecological systems.


Author(s):  
William R Shoemaker ◽  
Kenneth J Locey ◽  
Jay T Lennon

An ecological theory of microbial biodiversity has yet to be developed. This shortcoming leaves patterns of abundance, distribution, and diversity for the most abundant and diverse organisms on Earth without a predictive framework. However, because of their high abundance and complex dynamics, microbial communities may be underpinned by lognormal dynamics, i.e., synergistic interactions among complex stochastic variables. Using a global-scale compilation of 20,456 sites from a diverse set of natural and host-related environments, we test whether a lognormal model predicts microbial distributions of abundance and diversity-abundance scaling laws better than other well-known models, including the most successful macroecological theory of biodiversity, i.e., maximum entropy theory of ecology. We found that the lognormal explains the greatest percent variation in abundance, that the success of the lognormal increased with abundance while other models decreased, and that the lognormal was the only model to reproduce recently documented diversity-abundance scaling laws. Our unifying ecological theory of microbial biodiversity explains and predicts macroecological patterns based on dynamics that capture the complex large number dynamics of microbial life.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 420
Author(s):  
María Eugenia Salgado Salomón ◽  
Carolina Barroetaveña ◽  
Tuula Niskanen ◽  
Kare Liimatainen ◽  
Matthew E. Smith ◽  
...  

This paper is a contribution to the current knowledge of taxonomy, ecology and distribution of South American Cortinarius (Pers.) Gray. Cortinarius is among the most widely distributed and species-rich basidiomycete genera occurring with South American Nothofagaceae and species are found in many distinct habitats, including shrublands and forests. Due to their ectomycorrhizal role, Cortinarius species are critical for nutrient cycling in forests, especially at higher latitudes. Some species have also been reported as edible fungi with high nutritional quality. Our aim is to unravel the taxonomy of selected Cortinarius belonging to phlegmacioid and myxotelamonioid species based on morphological and molecular data. After widely sampling Cortinarius specimens in Patagonian Nothofagaceae forests and comparing them to reference collections (including holotypes), we propose five new species of Cortinarius in this work. Phylogenetic analyses of concatenated rDNA ITS-LSU and RPB1 sequences failed to place these new species into known Cortinarius sections or lineages. These findings highlight our knowledge gaps regarding the fungal diversity of South American Nothofagaceae forests. Due to the high diversity of endemic Patagonian taxa, it is clear that the South American Cortinarius diversity needs to be discovered and described in order to understand the evolutionary history of Cortinarius on a global scale.


The Auk ◽  
2021 ◽  
Author(s):  
Joseph A Tobias ◽  
Paul F Donald ◽  
Rob W Martin ◽  
Stuart H M Butchart ◽  
Nigel J Collar

AbstractSpecies are fundamental to biology, conservation, and environmental legislation; yet, there is often disagreement on how and where species limits should be drawn. Even sophisticated molecular methods have limitations, particularly in the context of geographically isolated lineages or inadequate sampling of loci. With extinction rates rising, methods are needed to assess species limits rapidly but robustly. Tobias et al. devised a points-based system to compare phenotypic divergence between taxa against the level of divergence in sympatric species, establishing a threshold to guide taxonomic assessments at a global scale. The method has received a mixed reception. To evaluate its performance, we identified 397 novel taxonomic splits from 328 parent taxa made by application of the criteria (in 2014‒2016) and searched for subsequent publications investigating the same taxa with molecular and/or phenotypic data. Only 71 (18%) novel splits from 60 parent taxa have since been investigated by independent studies, suggesting that publication of splits underpinned by the criteria in 2014–2016 accelerated taxonomic decisions by at least 33 years. In the evaluated cases, independent analyses explicitly or implicitly supported species status in 62 (87.3%) of 71 splits, with the level of support increasing to 97.2% when excluding subsequent studies limited only to molecular data, and reaching 100% when the points-based criteria were applied using recommended sample sizes. Despite the fact that the training set used to calibrate the criteria was heavily weighted toward passerines, splits of passerines and non-passerines received equally strong support from independent research. We conclude that the method provides a useful tool for quantifying phenotypic divergence and fast-tracking robust taxonomic decisions at a global scale.


Sign in / Sign up

Export Citation Format

Share Document