scholarly journals Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques

2016 ◽  
Vol 113 (24) ◽  
pp. E3413-E3422 ◽  
Author(s):  
Hui Li ◽  
Shuyi Wang ◽  
Rui Kong ◽  
Wenge Ding ◽  
Fang-Hua Lee ◽  
...  

Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.

2021 ◽  
Author(s):  
Hui Li ◽  
Shuyi Wang ◽  
Fang-Hua Lee ◽  
Ryan S. Roark ◽  
Alex I. Murphy ◽  
...  

Previously, we showed that substitution of HIV-1 Env residue 375-Ser by bulky aromatic residues enhances binding to rhesus CD4 and enables primary HIV-1 Envs to support efficient replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing SHIVs containing ten primary Envs corresponding to HIV-1 subtypes A, B, C, AE and AG. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one replicated efficiently in primary rhesus cells. This was a subtype AE SHIV that naturally contained His at Env375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs led to efficient replication in rhesus CD4+ T cells in vitro and in vivo. Nine SHIVs containing optimized Env375 alleles were grown large-scale in primary rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, and transmissible by rectal, vaginal, penile, oral or intravenous routes. To facilitate future SHIV constructions, we engineered a simplified second-generation design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary Envs with bulky aromatic substitutions at Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. Such SHIVs are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used to test vaccine efficacy in preclinical monkey trials. Importance SHIV infection of Indian rhesus macaques is an important animal model for studying HIV-1 transmission, prevention, immunopathogenesis and cure. Such research is timely, given recent progress with active and passive immunization and novel approaches to HIV-1 cure. Given the multifaceted roles of HIV-1 Env in cell tropism and virus entry, and as a target for neutralizing and non-neutralizing antibodies, Envs selected for SHIV construction are of paramount importance. Until recently, it has been impossible to strategically design SHIVs bearing clinically relevant Envs that replicate consistently in monkeys. This changed with the discovery that bulky aromatic substitutions at residue Env375 confer enhanced affinity to rhesus CD4. Here, we show that 10 new SHIVs bearing primary HIV-1 Envs with residue 375 substitutions replicated efficiently in RMs and could be transmitted efficiently across rectal, vaginal, penile and oral mucosa. These findings suggest an expanded role for SHIVs as a model of HIV-1 infection.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Dominique Mahé ◽  
Giulia Matusali ◽  
Claire Deleage ◽  
Raquel L. L. S. Alvarenga ◽  
Anne-Pascale Satie ◽  
...  

ABSTRACT Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro. Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo. Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses. IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro. Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


2016 ◽  
Vol 80 ◽  
pp. 68-77
Author(s):  
Yongjiao Yu ◽  
Lu Fu ◽  
Xiaoyu Jiang ◽  
Shanshan Guan ◽  
Ziyu Kuai ◽  
...  

2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Shridhar Bale ◽  
Geraldine Goebrecht ◽  
Armando Stano ◽  
Richard Wilson ◽  
Takayuki Ota ◽  
...  

ABSTRACT We have demonstrated that a liposomal array of well-ordered trimers enhances B cell activation, germinal center formation, and the elicitation of tier-2 autologous neutralizing antibodies. Previously, we coupled well-ordered cleavage-independent NFL trimers via their C-terminal polyhistidine tails to nickel lipids integrated into the lipid bilayer. Despite favorable in vivo effects, concern remained over the potentially longer-term in vivo instability of noncovalent linkage of the trimers to the liposomes. Accordingly, we tested both cobalt coupling and covalent linkage of the trimers to the liposomes by reengineering the polyhistidine tail to include a free cysteine on each protomer of model BG505 NFL trimers to allow covalent linkage. Both cobalt and cysteine coupling resulted in a high-density array of NFL trimers that was stable in both 20% mouse serum and 100 mM EDTA, whereas the nickel-conjugated trimers were not stable under these conditions. Binding analysis and calcium flux with anti-Env-specific B cells confirmed that the trimers maintained conformational integrity following coupling. Following immunization of mice, serologic analysis demonstrated that the covalently coupled trimers elicited Env-directed antibodies in a manner statistically significantly improved compared to soluble trimers and nickel-conjugated trimers. Importantly, the covalent coupling not only enhanced gp120-directed responses compared to soluble trimers, it also completely eliminated antibodies directed to the C-terminal His tag located at the “bottom” of the spike. In contrast, soluble and noncovalent formats efficiently elicited anti-His tag antibodies. These data indicate that covalent linkage of well-ordered trimers to liposomes in high-density array displays multiple advantages in vitro and in vivo. IMPORTANCE Enveloped viruses typically encode a surface-bound glycoprotein that mediates viral entry into host cells and is a primary target for vaccine design. Liposomes with modified lipid head groups have a unique feature of capturing and displaying antigens on their surfaces, mimicking the native pathogens. Our first-generation nickel-based liposomes captured HIV-1 Env glycoprotein trimers via a noncovalent linkage with improved efficacy over soluble glycoprotein in activating germinal center B cells and eliciting tier-2 autologous neutralizing antibodies. In this study, we report the development of second-generation cobalt- and maleimide-based liposomes that have improved in vitro stability over nickel-based liposomes. In particular, the maleimide liposomes captured HIV-1 Env trimers via a more stable covalent bond, resulting in enhanced germinal center B cell responses that generated higher antibody titers than the soluble trimers and liposome-bearing trimers via noncovalent linkages. We further demonstrate that covalent coupling prevents release of the trimers prior to recognition by B cells and masks a nonneutralizing determinant located at the bottom of the trimer.


Author(s):  
Dominique Mahé ◽  
Giulia Matusali ◽  
Claire Deleage ◽  
Raquel L. L. S. Alvarenga ◽  
Anne-Pascale Satie ◽  
...  

AbstractViruses have colonized the germ line of our ancestors at several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few non-retroviruses. Among the recently emerged viruses infecting humans, several target the testis (eg HIV, Zika and Ebola viruses). Here we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro. Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and SIV DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque and one African Green monkey in vivo. Molecular landscape analysis revealed that early TGCs were enriched in HIV early co-factors up to integration and had overall low antiviral defenses when compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate our germline and become endogenous in the future, as happened during human evolution for a number of viruses.ImportanceViruses have colonized the host germ line at many occasions during evolution to eventually become endogenous. Here we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro. Our results indicate that isolated primary TGCs express alternative HIV-1 receptors allowing virions binding but not entry. However, HIV-1 entered and integrated in TGCs upon cell-associated infection, and produced low level of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication including integration, suggesting potential for endogenization in the future generations.


2002 ◽  
Vol 83 (5) ◽  
pp. 1183-1188 ◽  
Author(s):  
Iouri L. Kozyrev ◽  
Tomoyuki Miura ◽  
Taichiro Takemura ◽  
Takeo Kuwata ◽  
Masahiro Ui ◽  
...  

The positive effect of the co-expression of T helper (Th) cell type 2 cytokine interleukin-5 (IL-5) on nef-deleted simian/human immunodeficiency virus (SHIV) replication in vitro has been observed previously. To analyse whether the growth advantage of IL-5-containing SHIV (NI-IL5) in vitro would be relevant in vivo, the virus was inoculated into monkeys. Three rhesus macaques were inoculated intravenously with 104 TCID50 of NI-IL5. Results were compared with those obtained previously from SHIV NM-3rN (intact) and SHIV-dn (nef-deleted)-infected monkeys. Cytokine production, analysed by IL-5 ELISA, showed a twofold increase in IL-5 concentration in the plasma soon after the peak of virus replication. Virus replication and antibody production were greater in monkeys inoculated with IL-5-expressing SHIV than in monkeys inoculated with nef-deleted SHIV without IL-5. These findings show a stimulation of SHIV replication by co-expression of IL-5 and suggest the important role of Th2-type cytokines in human immunodeficiency virus type 1 infection.


Author(s):  
Ryan S. Roark ◽  
Hui Li ◽  
Wilton B. Williams ◽  
Hema Chug ◽  
Rosemarie D. Mason ◽  
...  

ABSTRACTNeutralizing antibodies elicited by HIV-1 coevolve with viral Envs in distinctive patterns, in some cases acquiring substantial breadth. Here we show that primary HIV-1 Envs, when expressed by simian-human immunodeficiency viruses in rhesus macaques, elicited patterns of Env-antibody coevolution strikingly similar to those in humans. This included conserved immunogenetic, structural and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2-apex mode of recognition like that of human bNAbs PGT145/PCT64-35M. Another rhesus antibody bound the CD4-binding site by CD4 mimicry mirroring human bNAbs 8ANC131/CH235/VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.One sentence summaryVirus-antibody coevolution in rhesus macaques recapitulates developmental features of human antibodies.


Science ◽  
2020 ◽  
Vol 371 (6525) ◽  
pp. eabd2638
Author(s):  
Ryan S. Roark ◽  
Hui Li ◽  
Wilton B. Williams ◽  
Hema Chug ◽  
Rosemarie D. Mason ◽  
...  

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins—when expressed by simian-human immunodeficiency viruses in rhesus macaques—elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env–amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.


2012 ◽  
Vol 86 (16) ◽  
pp. 8516-8526 ◽  
Author(s):  
Rajeev Gautam ◽  
Yoshiaki Nishimura ◽  
Wendy R. Lee ◽  
Olivia Donau ◽  
Alicia Buckler-White ◽  
...  

There is an urgent need to develop new pathogenic R5 simian/human immunodeficiency viruses (SHIVs) for the evaluation of candidate anti-HIV vaccines in nonhuman primates. Here, we characterize swarm SHIVAD8stocks, prepared from three infected rhesus macaques with documented immunodeficiency at the time of euthanasia, for their capacity to establish durable infections in macaques following inoculation by the intravenous (i.v.) or intrarectal (i.r.) route. All three viral stocks (SHIVAD8-CE8J, SHIVAD8-CK15, and SHIVAD8-CL98) exhibited robust replicationin vivoand caused marked depletion of CD4+T cells affecting both memory and naïve CD4+T lymphocyte subsets following administration by either route. Eleven of 22 macaques inoculated with the new SHIVAD8stocks were euthanized with clinical symptoms of immunodeficiency and evidence of opportunistic infections (Pneumocystis,Candida, andMycobacterium). A single but unique founder virus, also present in the SHIVAD8-CE8Jswarm stock, was transmitted to two animals following a single i.r. inoculation of approximately 3 50% animal infectious doses, which is close to the threshold required to establish infection in all exposed animals. Because the three new SHIVAD8viruses are mucosally transmissible, exhibited tier 2 sensitivity to anti-HIV-1 neutralizing antibodies, deplete CD4+T lymphocytesin vivo, and induce AIDS in macaques, they are eminently suitable as challenge viruses in vaccine experiments.


2021 ◽  
Author(s):  
Hui Li ◽  
Shuyi Wang ◽  
Fang-Hua Lee ◽  
Ryan S. Roark ◽  
Alex I. Murphy ◽  
...  

AbstractSimian-human immunodeficiency virus (SHIV) chimeras contain the HIV-1 envelope (env) gene embedded within an SIVmac proviral backbone. Previously, we showed that substitution of Env residue 375-Ser by bulky aromatic residues enhances Env binding to rhesus CD4 and enables primary or transmitted/founder (T/F) HIV-1 Envs to support efficient SHIV replication in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing and analyzing SHIVs containing ten strategically selected primary or T/F HIV-1 Envs corresponding to subtypes A, B, C, AE and AG, each with six allelic variants at position 375. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one of these replicated efficiently in rhesus CD4+ T cells. This was a SHIV whose subtype AE Env naturally contained a bulky aromatic His residue at position 375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs uniformly led to efficient replication in rhesus CD4+ T in vitro and in RMs in vivo. Env375-Trp – the residue found most frequently among SIV strains infecting Old World monkeys – was favored for SHIV replication in RMs, although some SHIVs preferred Env375-Tyr, -His or -Phe. Nine SHIVs containing optimized Env375 alleles were grown large scale in primary activated rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, transmissible by rectal, vaginal, penile, oral or intravenous inoculation routes, and exhibited acute and early replication kinetics that were indistinguishable from HIV-1 infection in humans. Finally, to expedite future SHIV constructions and eliminate short redundant elements in tat1 and env gp41 that were spontaneously deleted in chronically infected monkeys, we engineered a simplified second-generation SHIV design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary or T/F Envs with bulky aromatic amino acid substitutions at position Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. We further show that SHIV challenge stocks grown in primary rhesus CD4+ T cells are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used effectively to test for vaccine efficacy in preclinical monkey trials.


Sign in / Sign up

Export Citation Format

Share Document