scholarly journals Immunochemical engineering of cell surfaces to generate virus resistance

2017 ◽  
Vol 114 (18) ◽  
pp. 4655-4660 ◽  
Author(s):  
Jia Xie ◽  
Devin Sok ◽  
Nicholas C. Wu ◽  
Tianqing Zheng ◽  
Wei Zhang ◽  
...  

Modern immunochemical engineering allows the creation of cells that either secrete antibodies or incorporate them into various cellular compartments, including the plasma membrane. Because the receptors for most viruses are known, if one can achieve the proper stoichiometry and geometry, plasma membrane-associated antibodies to these receptors should block viral infection. In this report, we test this concept for two different viruses, human rhinovirus and HIV. Plasma membrane-tethered antibodies efficiently rendered cells permanently nonpermissive for infection by both these viruses. Membrane-bound antibodies were much more efficient than free antibody in preventing infection, likely because of the effective molarity of membrane bound antibodies. Such resistant cells may restore immune-competence to otherwise compromised HIV patients.

Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.


1977 ◽  
Vol 38 (03) ◽  
pp. 0630-0639 ◽  
Author(s):  
Shuichi Hashimoto ◽  
Sachiko Shibata ◽  
Bonro Kobayashi

SummaryTreatment of washed rabbit platelets with 1 u/ml of thrombin at 37° C resulted in a disappearance from platelets of a protein with 250,000 dalton molecular weight which was shown to be originated from plasma membrane. Parallel loss of adenyl cyclase was noted, and both reactions were complete within 30 sec. From the patterns of disc electrophoretograms, the importance of quick suppression of thrombin action in demonstrating the primary event was stressed.Thrombin induced an apparent activation of membrane bound phosphodiesterase. This reaction was also complete within 30 sec. The cellular component which contained the enzyme activity was distinct from plasma membrane. Soluble phosphodiesterase was not influenced by thrombin at all.These reactions required intact platelet cells to react with thrombin, and no reaction was detected when subcellular preparations were treated with thrombin.Possibility of collaboration of changes in externally located synthetic enzyme with those in internally located degrading enzyme in the early phase of thrombin action on platelets was suggested.


1973 ◽  
Vol 21 (5) ◽  
pp. 488-498 ◽  
Author(s):  
R. E. POELMANN ◽  
W. T. DAEMS ◽  
E. J. VAN LOHUIZEN

This cytochemical and electron microscopic study on peritoneal macrophages of the guinea pig has raised doubts concerning the validity of lead methods for the demonstration of plasma membrane-bound adenosine triphosphatase activity. The problems encountered are inherent in the use of lead ions as a capture reagent. The nonenzymatically formed precipitates reflect sites of heterogeneous nucleation specific for certain kinds of cells, e.g., resident peritoneal macrophages, eosinophilic granulocytes and, to a lesser degree, exudate monocytes. This type of precipitation is also catalyzed on the surface of nonbiologic matrices such as latex particles. Enzymatic processes may well occur, but they cannot be distinguished from nonenzymatic processes.


1986 ◽  
Vol 34 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Claudio Umile ◽  
Christian P. Kubicek

2005 ◽  
Vol 13 (6) ◽  
pp. 3-7
Author(s):  
Stephen W. Carmichael

Clathrin-coated vesicles are the shuttle containers within cells. The vesicles carry lipids and proteins between membrane-bound compartments. Clathrin forms a cage-like structure around the membrane-bound vesicle that is pinched off from the plasma membrane (in endocytosis) or a membranous component of the cytoplasm. Clathrin recruits cargo that is within a vesicle through intermediary proteins known as adaptors that help select membrane-anchored protein and form an interface between the clathrin cage and the membrane bilayer.


1990 ◽  
Vol 265 (33) ◽  
pp. 20653-20661
Author(s):  
E San José ◽  
A Benguría ◽  
A Villalobo

1999 ◽  
Vol 112 (22) ◽  
pp. 4143-4150 ◽  
Author(s):  
M. Kreft ◽  
S. Gasman ◽  
S. Chasserot-Golaz ◽  
V. Kuster ◽  
M. Rupnik ◽  
...  

Besides having a role in signal transduction some trimeric G-proteins may be involved in a late stage of exocytosis. Using immunocytochemistry and confocal microscopy we found that Gi(3)-protein resides mainly in the plasma membrane, whereas Gi(1/2-)protein is preferentially associated with secretory granules. To study the function of trimeric Gi(3)- and Gi(1/2)-proteins, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. We report here that mastoparan, an activator of trimeric G-proteins, enhances calcium-induced secretory activity in rat melanotrophs. The introduction of synthetic peptides corresponding to the C-terminal domain of the (α)-subunit of Gi(3)- and Gi(1/2)-proteins indicated that Gi(3)peptide specifically blocked the mastoparan-stimulated secretory activity, which indicates an involvement of a trimeric Gi(3)-protein in mastoparan-stimulated secretory activity. Flash photolysis of caged Ca(2+)-elicited biphasic capacitance increases consisting of a fast and a slower component. Injection of anti-Gi(3) antibodies selectively inhibited the slow but not the fast component of secretory activity in rat melanotrophs. We propose that the plasma membrane-bound Gi(3)-protein may be involved in regulated secretion by specifically controlling the slower kinetic component of exocytosis.


Sign in / Sign up

Export Citation Format

Share Document