scholarly journals Declines in methane uptake in forest soils

2018 ◽  
Vol 115 (34) ◽  
pp. 8587-8590 ◽  
Author(s):  
Xiangyin Ni ◽  
Peter M. Groffman

Forest soils are a sink for atmospheric methane (CH4) and play an important role in modulating the global CH4 budget. However, whether CH4 uptake by forest soils is affected by global environmental change is unknown. We measured soil to atmosphere net CH4 fluxes in temperate forests at two long-term ecological research sites in the northeastern United States from the late 1990s to the mid-2010s. We found that annual soil CH4 uptake decreased by 62% and 53% in urban and rural forests in Baltimore, Maryland and by 74% and 89% in calcium-fertilized and reference forests at Hubbard Brook, New Hampshire over this period. This decrease occurred despite marked declines in nitrogen deposition and increases in atmospheric CH4 concentration and temperature, which should lead to increases in CH4 uptake. This decrease in soil CH4 uptake appears to be driven by increases in precipitation and soil hydrological flux. Furthermore, an analysis of CH4 uptake around the globe showed that CH4 uptake in forest soils has decreased by an average of 77% from 1988 to 2015, particularly in forests located from 0 to 60 °N latitude where precipitation has been increasing. We conclude that the soil CH4 sink may be declining and overestimated in several regions across the globe.

BioScience ◽  
2020 ◽  
Vol 70 (2) ◽  
pp. 141-156 ◽  
Author(s):  
Evelyn E Gaiser ◽  
David M Bell ◽  
Max C N Castorani ◽  
Daniel L Childers ◽  
Peter M Groffman ◽  
...  

Abstract Detecting and understanding disturbance is a challenge in ecology that has grown more critical with global environmental change and the emergence of research on social–ecological systems. We identify three areas of research need: developing a flexible framework that incorporates feedback loops between social and ecological systems, anticipating whether a disturbance will change vulnerability to other environmental drivers, and incorporating changes in system sensitivity to disturbance in the face of global changes in environmental drivers. In the present article, we review how discoveries from the US Long Term Ecological Research (LTER) Network have influenced theoretical paradigms in disturbance ecology, and we refine a framework for describing social–ecological disturbance that addresses these three challenges. By operationalizing this framework for seven LTER sites spanning distinct biomes, we show how disturbance can maintain or alter ecosystem state, drive spatial patterns at landscape scales, influence social–ecological interactions, and cause divergent outcomes depending on other environmental changes.


Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
David M. Iwaniec ◽  
Michael Gooseff ◽  
Katharine N. Suding ◽  
David Samuel Johnson ◽  
Daniel C. Reed ◽  
...  

2021 ◽  
pp. 100025
Author(s):  
Tamara K. Harms ◽  
Peter M. Groffman ◽  
Lihini Aluwihare ◽  
Chris Craft ◽  
William R Wieder ◽  
...  

2005 ◽  
Vol 29 (2) ◽  
pp. 907-911 ◽  
Author(s):  
Marco Cantonati ◽  
Ermanno Bertuzzi ◽  
Reinhard Gerecke ◽  
Karin Ortler ◽  
Daniel Spitale

Oceanography ◽  
2013 ◽  
Vol 26 (3) ◽  
pp. 168-179 ◽  
Author(s):  
Martha Mather ◽  
John Finn ◽  
Cristina Kennedy ◽  
Linda Deegan ◽  
Joseph Smith

Sign in / Sign up

Export Citation Format

Share Document