scholarly journals Insects and recent climate change

2021 ◽  
Vol 118 (2) ◽  
pp. e2002543117 ◽  
Author(s):  
Christopher A. Halsch ◽  
Arthur M. Shapiro ◽  
James A. Fordyce ◽  
Chris C. Nice ◽  
James H. Thorne ◽  
...  

Insects have diversified through more than 450 million y of Earth’s changeable climate, yet rapidly shifting patterns of temperature and precipitation now pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here, we consider how insects are responding to recent climate change while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared with changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions. We also consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work.

Author(s):  
Christopher A. Halsch ◽  
Arthur M. Shapiro ◽  
James A. Fordyce ◽  
Chris C. Nice ◽  
James H. Thorne ◽  
...  

AbstractInsects have diversified through 400 million years of Earth’s changeable climate, yet recent and ongoing shifts in patterns of temperature and precipitation pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here we consider how insects are responding to recent climate change, while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared to changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions and raise questions about the utility of temperate mountains as refugia during the Anthropocene. We consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work.Significance statementAnthropogenic climate change poses multiple threats to society and biodiversity, and challenges our understanding of the resilience of the natural world. We discuss recent ideas and evidence on this issue and conclude that the impacts of climate change on insects in particular have the potential to be more severe than might have been expected a decade ago. Finally, we suggest practical measures that include the protection of diverse portfolios of species, not just those inhabiting what are currently the most pristine areas.


2015 ◽  
Vol 105 (5) ◽  
pp. 232-236 ◽  
Author(s):  
Raymond Guiteras ◽  
Amir Jina ◽  
A. Mushfiq Mobarak

A burgeoning “Climate-Economy” literature has uncovered many effects of changes in temperature and precipitation on economic activity, but has made considerably less progress in modeling the effects of other associated phenomena, like natural disasters. We develop new, objective data on floods, focusing on Bangladesh. We show that rainfall and self-reported exposure are weak proxies for true flood exposure. These data allow us to study adaptation, giving accurate measures of both long-term averages and short term variation in exposure. This is important in studying climate change impacts, as people will not only experience new exposures, but also experience them differently.


2020 ◽  
Vol 727 ◽  
pp. 138519
Author(s):  
Carmen Pérez-Martínez ◽  
Kathleen M. Rühland ◽  
John P. Smol ◽  
Vivienne J. Jones ◽  
José M. Conde-Porcuna

2012 ◽  
Vol 162-163 ◽  
pp. 1-13 ◽  
Author(s):  
Clemens Wastl ◽  
Christian Schunk ◽  
Michael Leuchner ◽  
Gianni B. Pezzatti ◽  
Annette Menzel

2020 ◽  
Vol 150 ◽  
pp. 01010
Author(s):  
Wafae El Harraki ◽  
Driss Ouazar ◽  
Ahmed Bouziane ◽  
Driss Hasnaoui

Climate change impacts are being unequivocal on societies, natural resources and economic development. Observations and trends of climate features have been tackled by many scientists through analysis of historical series of temperature and precipitation and projections of theses parameters and of their extremes under different scenarios. This paper gives an overview of climate change observations and trends based on some latest works with focus on impacts on water resources and specifically in Morocco belonging to a vulnerable continent to climate change and to the Mediterranean region qualified as a “hot spot”. A case-study from Sebou Basin was conducted through an assessment of water supply from a future reservoir for different sizes under climate change scenarios for the mid and end of the 21st century. Simulations of the future multi-objective dam showed a decrease of total average supply between 9% to 12% for the mid-term scenario and 20% to 27% for the long-term scenario. The biggest size was found to have better reliability permitting approaching the fulfillment of all water needs for the log-term. Some adaptation options are recommended in occurrence water demand management, reservoir operation optimization and raising users „awareness and participation in climate change adaptation.


2015 ◽  
Vol 112 (9) ◽  
pp. 2670-2675 ◽  
Author(s):  
Frances C. Moore ◽  
David B. Lobell

Europe has experienced a stagnation of some crop yields since the early 1990s as well as statistically significant warming during the growing season. Although it has been argued that these two are causally connected, no previous studies have formally attributed long-term yield trends to a changing climate. Here, we present two statistical tests based on the distinctive spatial pattern of climate change impacts and adaptation, and explore their power under a range of parameter values. We show that statistical power for the identification of climate change impacts is high in many settings, but that power for identifying adaptation is almost always low. Applying these tests to European agriculture, we find evidence that long-term temperature and precipitation trends since 1989 have reduced continent-wide wheat and barley yields by 2.5% and 3.8%, respectively, and have slightly increased maize and sugar beet yields. These averages disguise large heterogeneity across the continent, with regions around the Mediterranean experiencing significant adverse impacts on most crops. This result means that climate trends can account for ∼10% of the stagnation in European wheat and barley yields, with likely explanations for the remainder including changes in agriculture and environmental policies.


Sign in / Sign up

Export Citation Format

Share Document