scholarly journals Time-reversal symmetry breaking in the Fe-chalcogenide superconductors

2021 ◽  
Vol 118 (3) ◽  
pp. e2007241118
Author(s):  
Nader Zaki ◽  
Genda Gu ◽  
Alexei Tsvelik ◽  
Congjun Wu ◽  
Peter D. Johnson

Topological superconductivity has been sought in a variety of heterostructure systems, the interest being that a material displaying such a phenomenon could prove to be the ideal platform to support Majorana fermions, which in turn could be the basis for advanced qubit technologies. Recently, the high-Tc family of superconductors, FeTe1−xSex, have been shown to exhibit the property of topological superconductivity and further, evidence has been found for the presence of Majorana fermions. We have studied the interplay of topology, magnetism, and superconductivity in the FeTe1−xSex family using high-resolution laser-based photoemission. At the bulk superconducting transition, a gap opens at the chemical potential as expected. However, a second gap is observed to open at the Dirac point in the topological surface state. The associated mass acquisition in the topological state points to time-reversal symmetry breaking, probably associated with the formation of ferromagnetism in the surface layer. The presence of intrinsic ferromagnetism combined with strong spin–orbit coupling provides an ideal platform for a range of exotic topological phenomena.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vadim Grinenko ◽  
Debarchan Das ◽  
Ritu Gupta ◽  
Bastian Zinkl ◽  
Naoki Kikugawa ◽  
...  

AbstractThere is considerable evidence that the superconducting state of Sr2RuO4 breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking, its onset temperature, TTRSB, is generally found to match the critical temperature, Tc, within resolution. In combination with evidence for even parity, this result has led to consideration of a dxz ± idyz order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding TTRSB = Tc, but it has a hard-to-explain horizontal line node at kz = 0. Therefore, s ± id and d ± ig order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain TTRSB ≈ Tc. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr2RuO4 under hydrostatic pressure, and Sr1.98La0.02RuO4 at zero pressure. Both hydrostatic pressure and La substitution alter Tc without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected, TTRSB should track changes in Tc, while if it is accidental, these transition temperatures should generally separate. We observe TTRSB to track Tc, supporting the hypothesis of dxz ± idyz order.


2013 ◽  
Vol 88 (15) ◽  
Author(s):  
Zheng-Cheng Gu ◽  
Hong-Chen Jiang ◽  
D. N. Sheng ◽  
Hong Yao ◽  
Leon Balents ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document