scholarly journals Hydrogen bonding rearrangement by a mitochondrial disease mutation in cytochrome bc1 perturbs heme bH redox potential and spin state

2021 ◽  
Vol 118 (33) ◽  
pp. e2026169118
Author(s):  
Patryk Kuleta ◽  
Jonathan Lasham ◽  
Marcin Sarewicz ◽  
Iwona Ekiert ◽  
Vivek Sharma ◽  
...  

Hemes are common elements of biological redox cofactor chains involved in rapid electron transfer. While the redox properties of hemes and the stability of the spin state are recognized as key determinants of their function, understanding the molecular basis of control of these properties is challenging. Here, benefiting from the effects of one mitochondrial disease–related point mutation in cytochrome b, we identify a dual role of hydrogen bonding (H-bond) to the propionate group of heme bH of cytochrome bc1, a common component of energy-conserving systems. We found that replacing conserved glycine with serine in the vicinity of heme bH caused stabilization of this bond, which not only increased the redox potential of the heme but also induced structural and energetic changes in interactions between Fe ion and axial histidine ligands. The latter led to a reversible spin conversion of the oxidized Fe from 1/2 to 5/2, an effect that potentially reduces the electron transfer rate between the heme and its redox partners. We thus propose that H-bond to the propionate group and heme-protein packing contribute to the fine-tuning of the redox potential of heme and maintaining its proper spin state. A subtle balance is needed between these two contributions: While increasing the H-bond stability raises the heme potential, the extent of increase must be limited to maintain the low spin and diamagnetic form of heme. This principle might apply to other native heme proteins and can be exploited in engineering of artificial heme-containing protein maquettes.

Biochemistry ◽  
2016 ◽  
Vol 55 (31) ◽  
pp. 4344-4355 ◽  
Author(s):  
James A. Birrell ◽  
Christoph Laurich ◽  
Edward J. Reijerse ◽  
Hideaki Ogata ◽  
Wolfgang Lubitz

Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 461 ◽  
Author(s):  
Maciej Spiegel ◽  
Tadeusz Andruniów ◽  
Zbigniew Sroka

Flavonoids are known for their antiradical capacity, and this ability is strongly structure-dependent. In this research, the activity of flavones and flavonols in a water solvent was studied with the density functional theory methods. These included examination of flavonoids’ molecular and radical structures with natural bonding orbitals analysis, spin density analysis and frontier molecular orbitals theory. Calculations of determinants were performed: specific, for the three possible mechanisms of action—hydrogen atom transfer (HAT), electron transfer–proton transfer (ETPT) and sequential proton loss electron transfer (SPLET); and the unspecific—reorganization enthalpy (RE) and hydrogen abstraction enthalpy (HAE). Intramolecular hydrogen bonding, catechol moiety activity and the probability of electron density swap between rings were all established. Hydrogen bonding seems to be much more important than the conjugation effect, because some structures tends to form more intramolecular hydrogen bonds instead of being completely planar. The very first hydrogen abstraction mechanism in a water solvent is SPLET, and the most privileged abstraction site, indicated by HAE, can be associated with the C3 hydroxyl group of flavonols and C4’ hydroxyl group of flavones. For the catechol moiety, an intramolecular reorganization to an o-benzoquinone-like structure occurs, and the ETPT is favored as the second abstraction mechanism.


Electrochem ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 20-31
Author(s):  
Thi Huong Le ◽  
Van Quyen Nguyen ◽  
Gaelle Trippe-Allard ◽  
Jean-Christophe Lacroix ◽  
Pascal Martin

The control of the interface and the adhesion process are key issues for the development of new application based on electrochromic materials. In this work the functionalization of an electrode’s surface through electroreduction of diazonium generated in situ from 4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenylamine (SNS-An) has been proposed. The synthesis of the aniline derivative SNS-An was performed and the electrografting was investigated by cyclic voltammetry on various electrodes. Then the organic thin film was fully characterized by several techniques and XPS analysis confirms the presence of an organic film based on the chemical composition of the starting monomer and allows an estimation of its thickness confirmed by AFM scratching measurements. Depending on the number of electrodeposition cycles, the thickness varies from 2 nm to 10 nm, which corresponds to a few grafted oligomers. In addition, the grafted film showed a good electrochemical stability depending on the scan rates up to 400 V/s and the electrochemical response of the modified electrode towards several redox probes showed that the attached layer acts as a conductive switch. Therefore, the electrode behaves as a barrier to electron transfer when the standard redox potential of the probe is below the layer switching potential, whereas the layer can be considered as transparent towards the electron transfer for redox probes with a redox potential above it.


2015 ◽  
Vol 22 (1) ◽  
pp. 331-339 ◽  
Author(s):  
Sipeng Zheng ◽  
Niels R. M. Reintjens ◽  
Maxime A. Siegler ◽  
Olivier Roubeau ◽  
Elisabeth Bouwman ◽  
...  

Small ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 1802307 ◽  
Author(s):  
Joanna Boucard ◽  
Camille Linot ◽  
Thibaut Blondy ◽  
Steven Nedellec ◽  
Philippe Hulin ◽  
...  

2011 ◽  
Vol 13 (11) ◽  
pp. 2826-2829 ◽  
Author(s):  
Yi-Chun Chung ◽  
Yi-Jung Tu ◽  
Shih-Hua Lu ◽  
Wan-Chi Hsu ◽  
Kuo Yuan Chiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document