scholarly journals A physical model of mantis shrimp for exploring the dynamics of ultrafast systems

2021 ◽  
Vol 118 (33) ◽  
pp. e2026833118
Author(s):  
Emma Steinhardt ◽  
Nak-seung P. Hyun ◽  
Je-sung Koh ◽  
Gregory Freeburn ◽  
Michelle H. Rosen ◽  
...  

Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density–limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m s−1 in air and 5 m s−1 in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.

2021 ◽  
Vol 224 (8) ◽  
Author(s):  
Jacob S. Harrison ◽  
Megan L. Porter ◽  
Matthew J. McHenry ◽  
H. Eve Robinson ◽  
S. N. Patek

ABSTRACT Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s−2, 292.7 rad s−1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults – even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s−1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms.


2008 ◽  
Vol 2008 (27) ◽  
pp. 65-72
Author(s):  
A. Baczmanski ◽  
N. Hfaiedh ◽  
M. Francois ◽  
K. Saanouni ◽  
K. Wierzbanowski

Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 151 ◽  
Author(s):  
Takafumi Kubo ◽  
Kuniaki Hirayama ◽  
Nobuhiro Nakamura ◽  
Mitsuru Higuchi

The aim of this study was to investigate whether accommodating elastic bands with barbell back squats (BSQ) increase muscular force during the deceleration subphase. Ten healthy men (mean ± standard deviation: Age: 23 ± 2 years; height: 170.5 ± 3.7 cm; mass: 66.7 ± 5.4 kg; and BSQ one repetition maximum (RM): 105 ± 23.1 kg; BSQ 1RM/body mass: 1.6 ± 0.3) were recruited for this study. The subjects performed band-resisted parallel BSQ (accommodating elastic bands each sides of barbell) with five band conditions in random order. The duration of the deceleration subphase, mean mechanical power, and the force and velocity during the acceleration and deceleration subphases were calculated. BSQ with elastic bands elicited greater mechanical power output, velocity, and force during the deceleration subphase, in contrast to that elicited with traditional free weight (p < 0.05). BSQ with elastic bands also elicited greater mechanical power output and velocity during the acceleration subphase. However, the force output during the acceleration subphase using an elastic band was lesser than that using a traditional free weight (p < 0.05). This study suggests that BSQ with elastic band elicit greater power output during the acceleration and deceleration subphases.


2009 ◽  
Vol 501 (1-2) ◽  
pp. 153-165 ◽  
Author(s):  
A. Baczmański ◽  
N. Hfaiedh ◽  
M. François ◽  
K. Wierzbanowski

2010 ◽  
Vol 628 (1-3) ◽  
pp. 116-127 ◽  
Author(s):  
Diethart Schmid ◽  
Dawid L. Staudacher ◽  
Christian A. Plass ◽  
Hans G. Loew ◽  
Eva Fritz ◽  
...  

2000 ◽  
Vol 203 (17) ◽  
pp. 2667-2689 ◽  
Author(s):  
R.K. Josephson ◽  
J.G. Malamud ◽  
D.R. Stokes

The basalar muscle of the beetle Cotinus mutabilis is a large, fibrillar flight muscle composed of approximately 90 fibers. The paired basalars together make up approximately one-third of the mass of the power muscles of flight. Changes in twitch force with changing stimulus intensity indicated that a basalar muscle is innervated by at least five excitatory axons and at least one inhibitory axon. The muscle is an asynchronous muscle; during normal oscillatory operation there is not a 1:1 relationship between muscle action potentials and contractions. During tethered flight, the wing-stroke frequency was approximately 80 Hz, and the action potential frequency in individual motor units was approximately 20 Hz. As in other asynchronous muscles that have been examined, the basalar is characterized by high passive tension, low tetanic force and long twitch duration. Mechanical power output from the basalar muscle during imposed, sinusoidal strain was measured by the work-loop technique. Work output varied with strain amplitude, strain frequency, the muscle length upon which the strain was superimposed, muscle temperature and stimulation frequency. When other variables were at optimal values, the optimal strain for work per cycle was approximately 5%, the optimal frequency for work per cycle approximately 50 Hz and the optimal frequency for mechanical power output 60–80 Hz. Optimal strain decreased with increasing cycle frequency and increased with muscle temperature. The curve relating work output and strain was narrow. At frequencies approximating those of flight, the width of the work versus strain curve, measured at half-maximal work, was 5% of the resting muscle length. The optimal muscle length for work output was shorter than that at which twitch and tetanic tension were maximal. Optimal muscle length decreased with increasing strain. The curve relating work output and muscle length, like that for work versus strain, was narrow, with a half-width of approximately 3 % at the normal flight frequency. Increasing the frequency with which the muscle was stimulated increased power output up to a plateau, reached at approximately 100 Hz stimulation frequency (at 35 degrees C). The low lift generated by animals during tethered flight is consistent with the low frequency of muscle action potentials in motor units of the wing muscles. The optimal oscillatory frequency for work per cycle increased with muscle temperature over the temperature range tested (25–40 degrees C). When cycle frequency was held constant, the work per cycle rose to an optimum with increasing temperature and then declined. We propose that there is a temperature optimum for work output because increasing temperature increases the shortening velocity of the muscle, which increases the rate of positive work output during shortening, but also decreases the durations of the stretch activation and shortening deactivation that underlie positive work output, the effect of temperature on shortening velocity being dominant at lower temperatures and the effect of temperature on the time course of activation and deactivation being dominant at higher temperatures. The average wing-stroke frequency during free flight was 94 Hz, and the thoracic temperature was 35 degrees C. The mechanical power output at the measured values of wing-stroke frequency and thoracic temperature during flight, and at optimal muscle length and strain, averaged 127 W kg(−1)muscle, with a maximum value of 200 W kg(−1). The power output from this asynchronous flight muscle was approximately twice that measured with similar techniques from synchronous flight muscle of insects, supporting the hypothesis that asynchronous operation has been favored by evolution in flight systems of different insect groups because it allows greater power output at the high contraction frequencies of flight.


Sign in / Sign up

Export Citation Format

Share Document