scholarly journals 5S rRNA gene transcription factor IIIA alters the helical configuration of DNA.

1983 ◽  
Vol 80 (7) ◽  
pp. 1862-1866 ◽  
Author(s):  
W. F. Reynolds ◽  
J. M. Gottesfeld
1991 ◽  
Vol 11 (8) ◽  
pp. 3978-3986 ◽  
Author(s):  
F E Campbell ◽  
D R Setzer

In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.


1997 ◽  
Vol 44 (3) ◽  
pp. 579-589 ◽  
Author(s):  
E Wyszko ◽  
M Radłowski ◽  
S Bartkowiak ◽  
M Z Barciszewska

Purification and properties of transcription factor IIIA (TF IIIA) from maize pollen (Zea mays L.) are presented for the first time. The purified protein has a molecular mass of about 35 kDa and exhibits binding affinity toward both 5S rRNA and 5S rRNA gene. It also facilitates transcription of the 5S rRNA gene in a HeLa cell extract.


1989 ◽  
Vol 9 (11) ◽  
pp. 4941-4950
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

Transcription factor TFIIIC2 derived from human cells is required for tRNA-type gene transcription and binds with high affinity to the essential B-box promoter element of tRNA-type genes. Although 5S rRNA genes contain no homology with the tRNA-type gene B box, we show that TFIIIC2 is also required for Xenopus laevis 5S rRNA gene transcription. TFIIIC2 protected an approximately 30-base-pair (-10 to +18) region of a Xenopus 5S rRNA gene from DNase I digestion. This region, which spanned the transcription start site, included sequences that are highly conserved among eucaryotic 5S rRNA genes and have no homology with the B-box sequence of tRNA genes. Mutation of the TFIIIC2-binding site reduced transcription of the 5S rRNA gene by a factor of 10 in HeLa cell extracts. Methylation of C residues within the TFIIIC2-binding site interfered with binding of TFIIIC2. These results suggest a role of the TFIIIC2-binding sequence in 5S rRNA gene transcription. In addition, the 5S rRNA gene binding site and the tRNA-type gene B-box sequence did not compete with each other for binding to TFIIIC2 any better than did an unrelated DNA sequence, indicating that TFIIIC2 interacts with 5S rRNA genes and tRNA-type genes through separate DNA-binding domains or polypeptides.


1991 ◽  
Vol 11 (8) ◽  
pp. 3978-3986
Author(s):  
F E Campbell ◽  
D R Setzer

In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.


1989 ◽  
Vol 9 (11) ◽  
pp. 4941-4950 ◽  
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

Transcription factor TFIIIC2 derived from human cells is required for tRNA-type gene transcription and binds with high affinity to the essential B-box promoter element of tRNA-type genes. Although 5S rRNA genes contain no homology with the tRNA-type gene B box, we show that TFIIIC2 is also required for Xenopus laevis 5S rRNA gene transcription. TFIIIC2 protected an approximately 30-base-pair (-10 to +18) region of a Xenopus 5S rRNA gene from DNase I digestion. This region, which spanned the transcription start site, included sequences that are highly conserved among eucaryotic 5S rRNA genes and have no homology with the B-box sequence of tRNA genes. Mutation of the TFIIIC2-binding site reduced transcription of the 5S rRNA gene by a factor of 10 in HeLa cell extracts. Methylation of C residues within the TFIIIC2-binding site interfered with binding of TFIIIC2. These results suggest a role of the TFIIIC2-binding sequence in 5S rRNA gene transcription. In addition, the 5S rRNA gene binding site and the tRNA-type gene B-box sequence did not compete with each other for binding to TFIIIC2 any better than did an unrelated DNA sequence, indicating that TFIIIC2 interacts with 5S rRNA genes and tRNA-type genes through separate DNA-binding domains or polypeptides.


2012 ◽  
Vol 45 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Jennifer A. Fairley ◽  
Louise E. Mitchell ◽  
Tracy Berg ◽  
Niall S. Kenneth ◽  
Conrad von Schubert ◽  
...  

2012 ◽  
Vol 47 (1) ◽  
pp. 148-149
Author(s):  
Jennifer A. Fairley ◽  
Louise E. Mitchell ◽  
Tracy Berg ◽  
Niall S. Kenneth ◽  
Conrad von Schubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document