la protein
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 16)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 12046
Author(s):  
Tabea Bartsch ◽  
Claudia Arndt ◽  
Liliana R. Loureiro ◽  
Alexandra Kegler ◽  
Edinson Puentes-Cala ◽  
...  

The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.


2021 ◽  
Vol 22 (18) ◽  
pp. 9699
Author(s):  
Nicole Berndt ◽  
Claudia C. Bippes ◽  
Irene Michalk ◽  
Tabea Bartsch ◽  
Claudia Arndt ◽  
...  

Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253494
Author(s):  
Vera Cherkasova ◽  
James R. Iben ◽  
Kevin J. Pridham ◽  
Alan C. Kessler ◽  
Richard J. Maraia

The sla1+ gene of Schizosachharoymces pombe encodes La protein which promotes proper processing of precursor-tRNAs. Deletion of sla1 (sla1Δ) leads to disrupted tRNA processing and sensitivity to target of rapamycin (TOR) inhibition. Consistent with this, media containing NH4+ inhibits leucine uptake and growth of sla1Δ cells. Here, transcriptome analysis reveals that genes upregulated in sla1Δ cells exhibit highly significant overalp with general amino acid control (GAAC) genes in relevant transcriptomes from other studies. Growth in NH4+ media leads to additional induced genes that are part of a core environmental stress response (CESR). The sla1Δ GAAC response adds to evidence linking tRNA homeostasis and broad signaling in S. pombe. We provide evidence that deletion of the Rrp6 subunit of the nuclear exosome selectively dampens a subset of GAAC genes in sla1Δ cells suggesting that nuclear surveillance-mediated signaling occurs in S. pombe. To study the NH4+-effects, we isolated sla1Δ spontaneous revertants (SSR) of the slow growth phenotype and found that GAAC gene expression and rapamycin hypersensitivity were also reversed. Genome sequencing identified a F32V substitution in Any1, a known negative regulator of NH4+-sensitive leucine uptake linked to TOR. We show that 3H-leucine uptake by SSR-any1-F32V cells in NH4+-media is more robust than by sla1Δ cells. Moreover, F32V may alter any1+ function in sla1Δ vs. sla1+ cells in a distinctive way. Thus deletion of La, a tRNA processing factor leads to a GAAC response involving reprogramming of amino acid metabolism, and isolation of the any1-F32V rescuing mutant provides an additional specific link.


2021 ◽  
Vol 22 (7) ◽  
pp. 3377
Author(s):  
Nicole Berndt ◽  
Claudia C. Bippes ◽  
Irene Michalk ◽  
Dominik Bachmann ◽  
Jennifer Bachmann ◽  
...  

According to the literature, the autoantigen La is involved in Cap-independent translation. It was proposed that one prerequisite for this function is the formation of a protein dimer. However, structural analyses argue against La protein dimers. Noteworthy to mention, these structural analyses were performed under reducing conditions. Here we describe that La protein can undergo redox-dependent structural changes. The oxidized form of La protein can form dimers, oligomers and even polymers stabilized by disulfide bridges. The primary sequence of La protein contains three cysteine residues. Only after mutation of all three cysteine residues to alanine La protein becomes insensitive to oxidation, indicating that all three cysteines are involved in redox-dependent structural changes. Biophysical analyses of the secondary structure of La protein support the redox-dependent conformational changes. Moreover, we identified monoclonal anti-La antibodies (anti-La mAbs) that react with either the reduced or oxidized form of La protein. Differential reactivities to the reduced and oxidized form of La protein were also found in anti-La sera of autoimmune patients.


2021 ◽  
Vol 22 (3) ◽  
pp. 1198
Author(s):  
Michael P. Bachmann ◽  
Tabea Bartsch ◽  
Claudia C. Bippes ◽  
Dominik Bachmann ◽  
Edinson Puentes-Cala ◽  
...  

Since the first description of nuclear autoantigens in the late 1960s and early 1970s, researchers, including ourselves, have found it difficult to establish monoclonal antibodies (mabs) against nuclear antigens, including the La/SS-B (Sjögrens’ syndrome associated antigen B) autoantigen. To date, only a few anti-La mabs have been derived by conventional hybridoma technology; however, those anti-La mabs were not bona fide autoantibodies as they recognize either human La specific, cryptic, or post-translationally modified epitopes which are not accessible on native mouse La protein. Herein, we present a series of novel murine anti-La mabs including truly autoreactive ones. These mabs were elicited from a human La transgenic animal through adoptive transfer of T cells from non-transgenic mice immunized with human La antigen. Detailed epitope and paratope analyses experimentally confirm the hypothesis that somatic hypermutations that occur during T cell dependent maturation can lead to autoreactivity to the nuclear La/SS-B autoantigen.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1808
Author(s):  
Alexandra V. Dolgikh ◽  
Elizaveta S. Rudaya ◽  
Elena A. Dolgikh

Single three-amino acid loop extension (TALE) homeodomain proteins, including the KNOTTED-like (KNOX) and BEL-like (BELL) families in plants, usually work as heterodimeric transcription factor complexes to regulate different developmental processes, often via effects on phytohormonal pathways. Nitrogen-fixing nodule formation in legumes is regulated by different families of homeodomain transcription factors. Whereas the role of KNOX transcription factors in the control of symbiosis was studied early, BELL transcription factors have received less attention. Here, we report the identification and expression analysis of BELL genes in the legume plants Medicago truncatula and Pisum sativum, which are involved in regulating symbiosis initiation and development. A more precise analysis was performed for the most significantly upregulated PsBELL1-2 gene in pea. We found that the PsBELL1-2 transcription factor could be a potential partner of PsKNOX9. In addition, we showed that PsBELL1-2 can interact with the PsDELLA1 (LA) protein-regulator of the gibberellin pathway, which has a previously demonstrated important role in symbiosis development.


2020 ◽  
Vol 432 (24) ◽  
pp. 166712
Author(s):  
Eleni G. Kaliatsi ◽  
Aikaterini I. Argyriou ◽  
Georgios Bouras ◽  
Maria Apostolidi ◽  
Parthena Konstantinidou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document