scholarly journals Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction.

1990 ◽  
Vol 87 (19) ◽  
pp. 7395-7399 ◽  
Author(s):  
P. M. Hwang ◽  
A. Verma ◽  
D. S. Bredt ◽  
S. H. Snyder
2002 ◽  
Vol 87 (6) ◽  
pp. 3152-3155 ◽  
Author(s):  
Tatsuya Ogura ◽  
Robert F. Margolskee ◽  
Sue C. Kinnamon

Previous studies in rat and mouse have shown that brief exposure to the bitter stimulus denatonium induces an increase in [Ca2+]i due to Ca2+ release from intracellular Ca2+ stores, rather than Ca2+influx. We report here that prolonged exposure to denatonium induces sustained increases in [Ca2+]i that are dependent on Ca2+ influx. Similar results were obtained from taste cells of the mudpuppy, Necturus maculosus, as well as green fluorescent protein (GFP) tagged gustducin-expressing taste cells of transgenic mice. In a subset of mudpuppy taste cells, prolonged exposure to denatonium induced oscillatory Ca2+responses. Depletion of Ca2+ stores by thapsigargin also induced Ca2+ influx, suggesting that Ca2+store-operated channels (SOCs) are present in both mudpuppy taste cells and gustducin-expressing taste cells of mouse. Further, treatment with thapsigargin prevented subsequent responses to denatonium, suggesting that the SOCs were the source of the Ca2+ influx. These data suggest that SOCs may contribute to bitter taste transduction and to regulation of Ca2+ homeostasis in taste cells.


Physiology ◽  
1988 ◽  
Vol 3 (3) ◽  
pp. 109-112
Author(s):  
SS Schiffman

The application to the tongue of agents that interact with taste cells can tell us a great deal about transduction mechanisms that mediate taste. Separate pathways for Na+ and K+ appear to be part of the transduction mechanisms for the tastes of sodium and potassium salts. Caffeine and other methyl xanthines can potentiate certain tastes;this enhancement may involve the interaction of caffeine with an adenosine receptor. There is also evidence for glutamate and inosine receptors in addition to multiple receptors for sweet and bitter tastes.


Author(s):  
A. I. Spielman ◽  
W. Yan ◽  
V. Krizhanovsky ◽  
S. Rosenzweig ◽  
T. Yamamoto ◽  
...  

2011 ◽  
Vol 49 (5) ◽  
pp. 507-512
Author(s):  
Thomas Braun ◽  
Brigitte Mack ◽  
Matthias F. Kramer

Background: Recently, solitary chemosensory cells have been described in the respiratory and vomeronasal epithelium of the rodent nose. Expressing G-protein coupled receptors for sweet, umami and bitter taste transduction, these cells are thought to mediate trigeminal reflexes upon stimulation with chemical irritants. The present study analyzes human nasal mucosa for the presence of solitary chemosensory cells. Methodology: In human tissue samples from respiratory mucosa and the vomeronasal organ, gene expression of taste receptors families was studied in five patients using the Affymetrix Human Gene 1.0 ST Array and immunohistochemistry with specific antibodies. Results: Immunohistochemistry revealed that solitary chemosensory cells expressing G-protein coupled receptors for sweet, umami and bitter taste transduction are present in the human nose. cDNA microarray analysis congruently showed that cells expressing bitter taste receptors accumulate in the vomeronasal organ compared to the respiratory epithelium. Conclusions: Solitary chemosensory cells expressing taste receptors are also present in the human nose. Since they are thought to mediate trigeminal reflexes, their role in the pathogenesis of nasal hyperreagibility should be elucidated in further studies.


Sign in / Sign up

Export Citation Format

Share Document