apical localization
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 13)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lucia Cassella ◽  
Anne Ephrussi

AbstractIntracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization. Whereas the dynein/BicD/Egl machinery controls apical RNA localization, basally-targeted RNAs require kinesin-1 to overcome a “default” dynein-mediated transport. Moreover, a non-canonical, translation- and dynein-dependent mechanism mediates apical localization of a subgroup of dynein-activating adaptor RNAs (BicD, Bsg25D, hook). Altogether, our study identifies at least three mechanisms underlying RNA localization in the FE, and suggests a possible link between RNA localization and dynein/dynactin/adaptor complex formation in vivo.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Nader Rahimi ◽  
Rachel X. Y. Ho ◽  
Kevin Brown Chandler ◽  
Kyle Oliver Corcino De La Cena ◽  
Razie Amraei ◽  
...  

Abstract Background The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell–cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. Results TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. Conclusions TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


2021 ◽  
Author(s):  
Nader Rahimi ◽  
Rachel HO ◽  
Kevin Chandler ◽  
Kyle De La Cena ◽  
Razie Amraei ◽  
...  

Background: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. Results: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of alpha-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of alpha-tubulin and filamentous (F)-actin organization. Conclusions: TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of alpha-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


Author(s):  
Rekik Bassem ◽  
◽  
Yaakoubi Wael ◽  
Zouari Fourat ◽  
Mghaith Fathia ◽  
...  

Cardiac pseudoaneurysm is rare and appears mostly as tardive complication of Acute Myocardial Infarct (AMI). Its apical localization is also scarce as it is usually described in posterior or lateral wall of left ventricle. Its diagnosis is based on cardiac imaging. We report a case of a hypertensive, diabetic and smoking 64-year-old man with a past history of anterior AMI. He was symptomatic of chest discomfort. Physical examination indicates an apical murmur, his electrocardiogram showed a regular sinus rhythm and a complete left branch block. The Transthoracic (TTE) echocardiography revealed a giant apical pocketlike aneurysm lined with a clot. Cardiac Magnetic Resonance Imaging (CMRI) confirmed the diagnosis of an apical pseudoaneurysm due to ischemic heart disease in the stage of severe heart failure.


Author(s):  
Lama Al-Qusairi ◽  
P Richard Grimm ◽  
Ava Marie Zapf ◽  
Paul A Welling

The association between diabetes insipidus (DI) and chronic dietary potassium deprivation is well known but it remains uncertain how the disorder develops and whether it is influenced by the sexual dimorphism in potassium handling. Here, we determine the plasma potassium (PK) threshold for DI in male and female mice and ascertain if the DI is initiated by polydipsia, or a central or nephrogenic defect. C57BL6J mice were randomized to a control diet or to graded reductions in dietary K+ for 8 days, and kidney function and transporters involved in water balance were characterized. We found male and female mice develop polyuria and secondary polydipsia. Altered water balance coincides with a decrease in AQP2 phosphorylation and apical localization despite increased levels of the vasopressin surrogate marker, copeptin. No change in the protein abundance of the urea transporter, UT-A1, was observed. NKCC2 decreased only in males. DDAVP treatment failed to reverse water diuresis in K+-restricted mice. These findings indicate that even small fall in PK is associated with nephrogenic DI (NDI), coincident with the development of altered AQP2 regulation, implicating low PK as a causal trigger of NDI. We found PK decreased more in females, and consequently females were more prone to develop NDI. Together these data indicate that AQP2 regulation is disrupted by a small decrease in PK and the response is influenced by sexual dimorphism in potassium handling. These findings provide new insights into the mechanisms linking water and potassium balances, and support defining the disorder as "Potassium-Dependent NDI."


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Weronika Fic ◽  
Rebecca Bastock ◽  
Francesco Raimondi ◽  
Erinn Los ◽  
Yoshiko Inoue ◽  
...  

Cdc42-GTP is required for apical domain formation in epithelial cells, where it recruits and activates the Par-6–aPKC polarity complex, but how the activity of Cdc42 itself is restricted apically is unclear. We used sequence analysis and 3D structural modeling to determine which Drosophila GTPase-activating proteins (GAPs) are likely to interact with Cdc42 and identified RhoGAP19D as the only high-probability Cdc42GAP required for polarity in the follicular epithelium. RhoGAP19D is recruited by α-catenin to lateral E-cadherin adhesion complexes, resulting in exclusion of active Cdc42 from the lateral domain. rhogap19d mutants therefore lead to lateral Cdc42 activity, which expands the apical domain through increased Par-6/aPKC activity and stimulates lateral contractility through the myosin light chain kinase, Genghis khan (MRCK). This causes buckling of the epithelium and invasion into the adjacent tissue, a phenotype resembling that of precancerous breast lesions. Thus, RhoGAP19D couples lateral cadherin adhesion to the apical localization of active Cdc42, thereby suppressing epithelial invasion.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hendrik Pannen ◽  
Tim Rapp ◽  
Thomas Klein

Loss of ESCRT function in Drosophila imaginal discs is known to cause neoplastic overgrowth fuelled by mis-regulation of signalling pathways. Its impact on junctional integrity, however, remains obscure. To dissect the events leading to neoplasia, we used transmission electron microscopy (TEM) on wing imaginal discs temporally depleted of the ESCRT-III core component Shrub. We find a specific requirement for Shrub in maintaining Septate Junction (SJ) integrity by transporting the Claudin Megatrachea (Mega) to the SJ. In absence of Shrub function, Mega is lost from the SJ and becomes trapped on endosomes coated with the endosomal retrieval machinery Retromer. We show that ESCRT function is required for apical localization and mobility of Retromer positive carrier vesicles, which mediate the biosynthetic delivery of Mega to the SJ. Accordingly, loss of Retromer function impairs the anterograde transport of several SJ core components, revealing a novel physiological role for this ancient endosomal agent.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev188011 ◽  
Author(s):  
João J. Ramalho ◽  
Jorian J. Sepers ◽  
Ophélie Nicolle ◽  
Ruben Schmidt ◽  
Janine Cravo ◽  
...  

ABSTRACTERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo. Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.


2020 ◽  
Author(s):  
João J. Ramalho ◽  
Ophélie Nicolle ◽  
Grégoire Michaux ◽  
Mike Boxem

AbstractERM proteins are conserved regulators of cortical membrane specialization, that function as membrane–actin linkers and molecular hubs. Activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2-binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single C. elegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo. Using CRISPR/Cas9-generated erm-1 mutant alleles we demonstrate that PIP2-binding is critically required for ERM-1 function. In contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and drive lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.


Sign in / Sign up

Export Citation Format

Share Document