scholarly journals The 5' splice site consensus RNA oligonucleotide induces assembly of U2/U4/U5/U6 small nuclear ribonucleoprotein complexes.

1992 ◽  
Vol 89 (22) ◽  
pp. 10969-10973 ◽  
Author(s):  
K. B. Hall ◽  
M. M. Konarska
1997 ◽  
Vol 17 (12) ◽  
pp. 7099-7107 ◽  
Author(s):  
D Y Hwang ◽  
J B Cohen

Both experimental work and surveys of the lengths of internal exons in nature have suggested that vertebrate internal exons require a minimum size of approximately 50 nucleotides for efficient inclusion in mature mRNA. This phenomenon has been ascribed to steric interference between complexes involved in recognition of the splicing signals at the two ends of short internal exons. To determine whether U1 small nuclear ribonucleoprotein, a multicomponent splicing factor that is involved in the first recognition of splice sites, contributes to the lower size limit of vertebrate internal exons, we have taken advantage of our previous observation that U1 small nuclear RNAs (snRNAs) which bind upstream or downstream of the 5' splice site (5'SS) stimulate splicing of the upstream intron. By varying the position of U1 binding relative to the 3'SS, we show that U1-dependent splicing of the upstream intron becomes inefficient when U1 is positioned 48 nucleotides or less downstream of the 3'SS, suggesting a minimal distance between U1 and the 3'SS of approximately 50 nucleotides. This distance corresponds well to the suggested minimum size of internal exons. The results of experiments in which the 3'SS region of the reporter was duplicated suggest an optimal distance of greater than 72 nucleotides. We have also found that inclusion of a 24-nucleotide miniexon is promoted by the binding of U1 to the downstream intron but not by binding to the 5'SS. Our results are discussed in the context of models to explain constitutive splicing of small exons in nature.


2008 ◽  
Vol 28 (19) ◽  
pp. 5924-5936 ◽  
Author(s):  
AnYu Zhou ◽  
Alexander C. Ou ◽  
Aeri Cho ◽  
Edward J. Benz ◽  
Shu-Ching Huang

ABSTRACT RBM25 has been shown to associate with splicing cofactors SRm160/300 and assembled splicing complexes, but little is known about its splicing regulation. Here, we characterize the functional role of RBM25 in alternative pre-mRNA splicing. Increased RBM25 expression correlated with increased apoptosis and specifically affected the expression of Bcl-x isoforms. RBM25 stimulated proapoptotic Bcl-xS 5′ splice site (5′ ss) selection in a dose-dependent manner, whereas its depletion caused the accumulation of antiapoptotic Bcl-xL. Furthermore, RBM25 specifically bound to Bcl-x RNA through a CGGGCA sequence located within exon 2. Mutation in this element abolished the ability of RBM25 to enhance Bcl-xS 5′ ss selection, leading to decreased Bcl-xS isoform expression. Binding of RBM25 was shown to promote the recruitment of the U1 small nuclear ribonucleoprotein particle (snRNP) to the weak 5′ ss; however, it was not required when a strong consensus 5′ ss was present. In support of a role for RBM25 in modulating the selection of a 5′ ss, we demonstrated that RBM25 associated selectively with the human homolog of yeast U1 snRNP-associated factor hLuc7A. These data suggest a novel mode for Bcl-xS 5′ ss activation in which binding of RBM25 with exonic element CGGGCA may stabilize the pre-mRNA-U1 snRNP through interactions with hLuc7A.


Cell ◽  
1986 ◽  
Vol 47 (5) ◽  
pp. 755-766 ◽  
Author(s):  
Jamal Tazi ◽  
Christine Alibert ◽  
Jamal Temsamani ◽  
Isabelle Reveillaud ◽  
Guy Cathala ◽  
...  

1989 ◽  
Vol 9 (8) ◽  
pp. 3429-3437
Author(s):  
C Y Yuo ◽  
A M Weiner

We have altered the specificity of U1 small nuclear RNA by replacing its 5' splice site recognition sequence (nucleotides 3 to 11) with sequences complementary to other regions of either the adenovirus E1A or the rabbit beta-globin mRNA precursor. We then used a HeLa cell transient expression assay to test whether such altered U1 small nuclear ribonucleoprotein particles (snRNPs) could interfere with splicing of the targeted mRNA precursors. The altered U1 snRNPs were able to cause novel splicing of the E1A mRNA precursor, minor changes in the ratio of E1A 12 to 13S mRNAs, and modest nuclear accumulation of beta-globin mRNA precursors with either one of the two introns removed. Most of the altered U1 snRNPs did not affect the level of mature cytoplasmic mRNA significantly, but in one case an altered U1 snRNP (alpha 1) whose intended target was located downstream from the adenovirus E1A 12S 5' splice site was able to reduce the level of cytoplasmic 12S mRNA by approximately 60% and that of 13S mRNA by 90%. This alpha 1 snRNP induced an additional E1A splice, resulting in the appearance of 10 and 11S E1A mRNAs normally found only late in adenovirus infection. Thus, a trans-acting factor can induce alternative splicing. Surprisingly, the effects of alpha 1 on E1A splicing were not abolished by deleting the intended target sequence on the mRNA precursor.


1987 ◽  
Vol 7 (2) ◽  
pp. 698-707
Author(s):  
B Chabot ◽  
J A Steitz

We examined the ability of U1 small nuclear ribonucleoproteins (U1 snRNPs) to recognize mutant and cryptic 5' splice sites on beta-globin pre-mRNA substrates using an RNase T1 protection assay. When U1 snRNPs were prebound to anti-(U1)RNP antibodies, we detected binding to mutant but not to cryptic 5' splice sites on several substrates. By contrast, in a splicing extract at 0 degree C, neither the mutated nor cryptic 5' splice sites of a human beta-globin transcript were selected as protected fragments with the same antibodies. However, after incubation of the transcript in the extract to yield splicing intermediates, fragments that included a cryptic 5' splice site were detected. The results of our analyses suggest that U1 snRNPs are involved in recognizing cryptic 5' splice sites but that interactions with other splicing components are required to stabilize the association.


1991 ◽  
Vol 11 (4) ◽  
pp. 1921-1926 ◽  
Author(s):  
R Conrad ◽  
J Thomas ◽  
J Spieth ◽  
T Blumenthal

In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, SL1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. We demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5' splice site into the 5' untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of a vit-5 intron, including the 3' splice site, were inserted into the 5' untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. We termed the region of a trans-spliced mRNA precursor between the 5' end and the first 3' splice site an "outron." Our results suggest that if a transcript begins with intronlike sequence followed by a 3' splice site, this alone may constitute an outron and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.


Sign in / Sign up

Export Citation Format

Share Document