scholarly journals Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor.

1993 ◽  
Vol 90 (7) ◽  
pp. 2700-2704 ◽  
Author(s):  
J. Fantini ◽  
D. G. Cook ◽  
N. Nathanson ◽  
S. L. Spitalnik ◽  
F. Gonzalez-Scarano
2009 ◽  
Vol 83 (24) ◽  
pp. 13032-13036 ◽  
Author(s):  
Mariana G. Bego ◽  
Mathieu Dubé ◽  
Johanne Mercier ◽  
Éric A. Cohen

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpu enhances virus particle release by counteracting a host factor that retains virions at the surfaces of infected cells. It was recently demonstrated that cellular protein BST-2/CD317/Tetherin restricts HIV-1 release in a Vpu-dependent manner. Calcium-modulating cyclophilin ligand (CAML) was also proposed to be involved in this process. We investigated whether CAML is involved in cell surface expression of Tetherin. Here, we show that CAML overexpression in permissive Cos-7 cells or CAML depletion in restrictive HeLa cells has no effect on HIV-1 release or on Tetherin surface expression, indicating that CAML is not required for Tetherin-mediated restriction of HIV-1 release.


2009 ◽  
Vol 83 (14) ◽  
pp. 7117-7128 ◽  
Author(s):  
Nadine Laguette ◽  
Christelle Brégnard ◽  
Jérôme Bouchet ◽  
Alexandre Benmerah ◽  
Serge Benichou ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef interferes with the endocytic machinery to modulate the cell surface expression of CD4. However, the basal trafficking of CD4 is governed by different rules in the target cells of HIV-1: whereas CD4 is rapidly internalized from the cell surface in myeloid cells, CD4 is stabilized at the plasma membrane through its interaction with the p56 lck kinase in lymphoid cells. In this study, we showed that Nef was able to downregulate CD4 in both lymphoid and myeloid cell lines but that an increase in the internalization rate of CD4 could be observed only in lymphoid cells. Expression of p56 lck in nonlymphoid CD4-expressing cells restores the ability of Nef in order to increase the internalization rate of CD4. Concurrent with this observation, the expression of a p56 lck -binding-deficient mutant of CD4 in lymphoid cells abrogates the Nef-induced acceleration of CD4 internalization. We also show that the expression of Nef causes a decrease in the association of p56 lck with cell surface-expressed CD4. Regardless of the presence of p56 lck , the downregulation of CD4 by Nef was followed by CD4 degradation. Our results imply that Nef uses distinct mechanisms to downregulate the cell surface expression levels of CD4 in either lymphoid or myeloid target cells of HIV-1.


2001 ◽  
Vol 75 (5) ◽  
pp. 2488-2492 ◽  
Author(s):  
Tianci Luo ◽  
Brenda L. Fredericksen ◽  
Keiji Hasumi ◽  
Akira Endo ◽  
J. Victor Garcia

ABSTRACT One well-characterized in vitro function of Nef is its ability to remove CD4, the human immunodeficiency virus (HIV) receptor, from the cell surface. Nef accomplishes this by accelerating the internalization and degradation of CD4. Current models propose that Nef promotes CD4 internalization via an increased association of CD4 with clathrin-coated pits (CCP). Here, we investigated the effect of a naturally occurring antiprotozoan antibiotic, ikarugamycin (IKA), on CD4 cell surface expression in human monocytic cells stably expressing HIV type 1 SF2 Nef. IKA was able to efficiently restore CD4 cell surface expression in Nef-expressing cells without affecting either CD4 synthesis or Nef expression. In addition, we demonstrate that IKA is also capable of efficiently blocking CD4 down-modulation in response to phorbol myristate acetate. Our data suggest that IKA may be an efficient and useful inhibitor of CCP-dependent endocytosis.


2001 ◽  
Vol 75 (10) ◽  
pp. 4664-4672 ◽  
Author(s):  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Benhur Lee ◽  
George J. Leslie ◽  
Melissa D. Sanchez ◽  
...  

ABSTRACT Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.


2001 ◽  
Vol 75 (8) ◽  
pp. 3971-3976 ◽  
Author(s):  
K. Janvier ◽  
H. Craig ◽  
S. Le Gall ◽  
R. Benarous ◽  
J. Guatelli ◽  
...  

ABSTRACT The Nef protein from the human immunodeficiency virus (HIV) induces CD4 cell surface downregulation by interfering with the endocytic machinery. It has been recently proposed that binding of HIV type 1 Nef to the β subunit of COPI coatomers participated in the Nef-induced CD4 downregulation through recognition of a novel diacidic motif found in the C-terminal disordered loop of Nef (V. Piguet, F. Gu, M. Foti, N. Demaurex, J. Gruenberg, J. L. Carpentier, and D. Trono, Cell 97:63–73, 1999). We have mutated the glutamate residues which formed this motif in order to document this observation. Surprisingly, mutation of the diacidic sequence of Nef did not significantly affect its ability (i) to interact with β-COP, (ii) to downregulate CD4 cell surface expression, and (iii) to address an integral resident membrane protein containing Nef as the cytoplasmic domain to the endocytic pathway. Our results indicate that these acidic residues are not involved in the connection of Nef with the endocytic machinery through binding to β-COP. Additional studies are thus required to characterize the residues of Nef involved in the binding to β-COP and to evaluate the contribution of this interaction to the Nef-induced perturbations of membrane trafficking.


1998 ◽  
Vol 72 (11) ◽  
pp. 9054-9060 ◽  
Author(s):  
Scott G. Kitchen ◽  
Yael D. Korin ◽  
Michael D. Roth ◽  
Alan Landay ◽  
Jerome A. Zack

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection requires cell surface expression of CD4. Costimulation of CD8+/CD4− T lymphocytes by anti-CD3 and anti-CD28 antibodies or by allogeneic dendritic cells induced expression of CD4 and rendered these CD8 cells susceptible to HIV-1 infection. Naive CD45RA+ cells responded with greater expression of CD4 than did CD45RO+ cells. CD8+lymphocytes derived from fetal or newborn sources exhibited a greater tendency to express CD4, consistent with their naive states. This mechanism of infection suggests HIV-induced perturbation of the CD8 arm of the immune response and could explain the generally rapid disease progression seen in HIV-infected children.


2005 ◽  
Vol 98 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Chadi A. Hage ◽  
Lisa L. Kohli ◽  
Sungyoo Cho ◽  
Randy R. Brutkiewicz ◽  
Homer L. Twigg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document