scholarly journals Positive selection of invariant V alpha 14+ T cells by non-major histocompatibility complex-encoded class I-like molecules expressed on bone marrow-derived cells.

1995 ◽  
Vol 92 (4) ◽  
pp. 1200-1204 ◽  
Author(s):  
Y. Adachi ◽  
H. Koseki ◽  
M. Zijlstra ◽  
M. Taniguchi
1992 ◽  
Vol 176 (1) ◽  
pp. 89-97 ◽  
Author(s):  
N Killeen ◽  
A Moriarty ◽  
H S Teh ◽  
D R Littman

The interaction of the T cell surface glycoprotein CD8 with major histocompatibility complex (MHC) class I molecules on target cells is required for effective T cell activation. Mutations in the alpha 3 domain of the MHC class I molecule can disrupt binding to CD8, yet leave antigen presentation unaffected. Here we show that such a mutation can interfere with positive and negative selection of T cells bearing T cell receptors (TCRs) that interact specifically with the mutant class I molecule. Autoreactive T cells in male mice expressing a transgenic TCR specific for the male antigen H-Y and H-2Db were not deleted in the context of a transgenic Db molecule bearing a mutation at residue 227. Similarly, CD8+ cells were not positively selected in female mice expressing both the TCR and mutant class I transgenes. Endogenous MHC class I molecules were competent to bind CD8, but were unable to rescue the defect, indicating a requirement for coordinate recognition of antigen/MHC by a complex of the TCR and CD8 coreceptor for both positive and negative selection of thymocytes.


1996 ◽  
Vol 183 (3) ◽  
pp. 1235-1240 ◽  
Author(s):  
B B Ernst ◽  
C D Surh ◽  
J Sprent

The requirements for inducing positive selection of T cells were examined in thymus reaggregation cultures, a system in which dispersed populations of immature CD4+8+ cells and purified thymic epithelial cells (TEC) are reaggregated in tissue culture. Studies with TEC from mice selectively lacking major histocompatibility complex (MHC) class I (I-II+), class II (I+II-), or both class I and II (I-II-) molecules showed that class II expression was essential for the differentiation of CD4+8+ cells into CD4+8- cells. Unexpectedly, the generation of TCRhi CD4-8+ cells from CD4+8+ cells was apparent with I-II+ TEC but not with I-II- TEC, perhaps reflecting cross-reactive specificity of CD4-8+ cells for class II molecules. Significantly, the failure of I-II- TEC to generate TCRhi CD4+8- or CD4-8+ cells could not be overcome by adding MHC+ bone marrow-derived cells. These findings, together with experiments on purified subsets of TEC, suggest that positive selection in thymus reaggregation cultures is an exclusive property of cortical TEC.


1997 ◽  
Vol 185 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Thomas Brocker ◽  
Mireille Riedinger ◽  
Klaus Karjalainen

It is well established that lymphoid dendritic cells (DC) play an important role in the immune system. Beside their role as potent inducers of primary T cell responses, DC seem to play a crucial part as major histocompatibility complex (MHC) class II+ “interdigitating cells” in the thymus during thymocyte development. Thymic DC have been implicated in tolerance induction and also by some authors in inducing major histocompatibility complex restriction of thymocytes. Most of our knowledge about thymic DC was obtained using highly invasive and manipulatory experimental protocols such as thymus reaggregation cultures, suspension cultures, thymus grafting, and bone marrow reconstitution experiments. The DC used in those studies had to go through extensive isolation procedures or were cultured with recombinant growth factors. Since the functions of DC after these in vitro manipulations have been reported to be not identical to those of DC in vivo, we intended to establish a system that would allow us to investigate DC function avoiding artificial interferences due to handling. Here we present a transgenic mouse model in which we targeted gene expression specifically to DC. Using the CD11c promoter we expressed MHC class II I-E molecules specifically on DC of all tissues, but not on other cell types. We report that I-E expression on thymic DC is sufficient to negatively select I-E reactive CD4+ T cells, and to a less complete extent, CD8+ T cells. In contrast, if only DC expressed I-E in a class II–deficient background, positive selection of CD4+ T cells could not be observed. Thus negative, but not positive, selection events can be induced by DC in vivo.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3566-3573 ◽  
Author(s):  
Søren Skov ◽  
Mette Nielsen ◽  
Søren Bregenholt ◽  
Niels Ødum ◽  
Mogens H. Claesson

Abstract Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3. In addition, the transcription factor Stat-3 was tyrosine phosphorylated in the cytoplasma and subsequently translocated to the cell nucleus. Data obtained by electrophoretic mobility shift assay suggested that the activated Stat-3 protein associates with the human serum-inducible element (hSIE) DNA-probe derived from the interferon-γ activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest the involvement of the Jak/Stat signal pathway in MHC-I–induced signal transduction in T cells.


Sign in / Sign up

Export Citation Format

Share Document