scholarly journals Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF- B through a pathway that includes the NF- B-inducing kinase and the I B kinases IKK  and IKK 

1998 ◽  
Vol 95 (17) ◽  
pp. 10106-10111 ◽  
Author(s):  
B. S. Sylla ◽  
S. C. Hung ◽  
D. M. Davidson ◽  
E. Hatzivassiliou ◽  
N. L. Malinin ◽  
...  
2003 ◽  
Vol 77 (2) ◽  
pp. 1316-1328 ◽  
Author(s):  
Aristides G. Eliopoulos ◽  
Elyse R. Waites ◽  
Sarah M. S. Blake ◽  
Clare Davies ◽  
Paul Murray ◽  
...  

ABSTRACT The oncogenic Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) mimics a constitutive active tumor necrosis factor (TNF) family receptor in its ability to recruit TNF receptor-associated factors (TRAFs) and TNF receptor-associated death domain protein (TRADD) in a ligand-independent manner. As a result, LMP1 constitutively engages signaling pathways, such as the JNK and p38 mitogen-activated protein kinases (MAPK), the transcription factor NF-κB, and the JAK/STAT cascade, and these activities may explain many of its pleiotropic effects on cell phenotype, growth, and transformation. In this study we demonstrate the ability of the TRAF-binding domain of LMP1 to signal on the JNK/AP-1 axis in a cell type- dependent manner that critically involves TRAF1 and TRAF2. Thus, expression of this LMP1 domain in TRAF1-positive lymphoma cells promotes significant JNK activation, which is blocked by dominant-negative TRAF2 but not TRAF5. However, TRAF1 is absent in many established epithelial cell lines and primary nasopharyngeal carcinoma (NPC) biopsy specimens. In these cells, JNK activation by the TRAF-binding domain of LMP1 depends on the reconstitution of TRAF1 expression. The critical role of TRAF1 in the regulation of TRAF2-dependent JNK signaling is particular to the TRAF-binding domain of LMP1, since a homologous region in the cytoplasmic tail of CD40 or the TRADD-interacting domain of LMP1 signal on the JNK axis independently of TRAF1 status. These data further dissect the signaling components used by LMP1 and identify a novel role for TRAF1 as a modulator of oncogenic signals.


Oncogene ◽  
2003 ◽  
Vol 22 (48) ◽  
pp. 7557-7569 ◽  
Author(s):  
Aristides G Eliopoulos ◽  
Jorge H Caamano ◽  
Joanne Flavell ◽  
Gary M Reynolds ◽  
Paul G Murray ◽  
...  

2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Alexander M. Price ◽  
Joshua E. Messinger ◽  
Micah A. Luftig

ABSTRACTRecent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription.IMPORTANCEEBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival.


2006 ◽  
Vol 80 (22) ◽  
pp. 11191-11199 ◽  
Author(s):  
Angharad M. Shore ◽  
Paul C. White ◽  
Rosaline C.-Y. Hui ◽  
Abdelkader Essafi ◽  
Eric W.-F. Lam ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infection is associated with the development of many B-cell lymphomas, including Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease. The virus alters a diverse range of cellular molecules, which leads to B-cell growth and immortalization. This study was initiated to investigate the interplay between EBV and a proapoptotic transcription factor target, FoxO1. In this report, we show that EBV infection of B cells leads to the downregulation of FoxO1 expression by phosphatidylinositol 3-kinase-mediated nuclear export, by inhibition of FoxO1 mRNA expression, and by alteration of posttranslational modifications. This repression directly correlates with the expression of the FoxO1 target gene Bcl-6 and inversely correlates with the FoxO1-regulated gene Cyclin D2. Expression of the EBV genes for latent membrane protein 1 and latent membrane protein 2A decreases FoxO1 expression. Thus, our data elucidate distinct mechanisms for the regulation of the proapoptotic transcription factor FoxO1 by EBV.


Sign in / Sign up

Export Citation Format

Share Document