scholarly journals Epstein-Barr Virus Represses the FoxO1 Transcription Factor through Latent Membrane Protein 1 and Latent Membrane Protein 2A

2006 ◽  
Vol 80 (22) ◽  
pp. 11191-11199 ◽  
Author(s):  
Angharad M. Shore ◽  
Paul C. White ◽  
Rosaline C.-Y. Hui ◽  
Abdelkader Essafi ◽  
Eric W.-F. Lam ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infection is associated with the development of many B-cell lymphomas, including Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease. The virus alters a diverse range of cellular molecules, which leads to B-cell growth and immortalization. This study was initiated to investigate the interplay between EBV and a proapoptotic transcription factor target, FoxO1. In this report, we show that EBV infection of B cells leads to the downregulation of FoxO1 expression by phosphatidylinositol 3-kinase-mediated nuclear export, by inhibition of FoxO1 mRNA expression, and by alteration of posttranslational modifications. This repression directly correlates with the expression of the FoxO1 target gene Bcl-6 and inversely correlates with the FoxO1-regulated gene Cyclin D2. Expression of the EBV genes for latent membrane protein 1 and latent membrane protein 2A decreases FoxO1 expression. Thus, our data elucidate distinct mechanisms for the regulation of the proapoptotic transcription factor FoxO1 by EBV.

2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Alexander M. Price ◽  
Joshua E. Messinger ◽  
Micah A. Luftig

ABSTRACTRecent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription.IMPORTANCEEBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival.


2012 ◽  
Vol 94 (10S) ◽  
pp. 369
Author(s):  
A. G.C. Harris-Arnold ◽  
S. L. Lambert ◽  
S. M. Krams ◽  
O. M. Martinez

2012 ◽  
Vol 94 (10S) ◽  
pp. 766
Author(s):  
A. G.C. Harris-Arnold ◽  
S. L. Lambert ◽  
S. M. Krams ◽  
O. M. Martinez

2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Kai-Min Lin ◽  
Sue-Jane Lin ◽  
Juin-Han Lin ◽  
Pei-Yi Lin ◽  
Pu-Lin Teng ◽  
...  

ABSTRACT The strongest evidence of the oncogenicity of Epstein-Barr virus (EBV) in vitro is its ability to immortalize human primary B lymphocytes into lymphoblastoid cell lines (LCLs). Yet the underlying mechanisms explaining how the virus tempers the growth program of the host cells have not been fully elucidated. The mitogen-activated protein kinases (MAPKs) are implicated in many cellular processes and are constitutively activated in LCLs. We questioned the expression and regulation of the dual-specificity phosphatases (DUSPs), the main negative regulator of MAPKs, during EBV infection and immortalization. Thirteen DUSPs, including 10 typical and 3 atypical types of DUSPs, were tested. Most of them were downregulated after EBV infection. Here, a role of viral oncogene latent membrane protein 1 (LMP1) in limiting DUSP6 and DUSP8 expression was identified. Using MAPK inhibitors, we found that LMP1 activates extracellular signal-regulated kinase (ERK) or p38 to repress the expression of DUSP6 and DUSP8, with corresponding substrate specificity. Morphologically, overexpression of DUSP6 and DUSP8 attenuates the ability of EBV-immortalized LCL cells to clump together. Mechanistically, apoptosis induced by restoring DUSP6 and DUSP8 in LCLs indicated a novel mechanism for LMP1 to provide a survival signal during EBV immortalization. Collectively, this report provides the first description of the interplay between EBV genes and DUSPs and contributes considerably to the interpretation of MAPK regulation in EBV immortalization. IMPORTANCE Infections by the ubiquitous Epstein-Barr virus (EBV) are associated with a wide spectrum of lymphomas and carcinomas. It has been well documented that activation levels of MAPKs are found in cancer cells to translate various external or intrinsic stimuli into cellular responses. Physiologically, the dual-specificity phosphates (DUSPs) exhibit great ability in regulating MAPK activities with respect to their capability of dephosphorylating MAPKs. In this study, we found that DUSPs were generally downregulated after EBV infection. EBV oncogenic latent membrane protein 1 (LMP1) suppressed DUSP6 and DUSP8 expression via MAPK pathway. In this way, LMP1-mediated MAPK activation was a continuous process. Furthermore, DUSP downregulation was found to contribute greatly to prevent apoptosis of EBV-infected cells. To sum up, this report sheds light on a novel molecular mechanism explaining how EBV maintains the unlimited proliferation status of the immortalized cells and provides a new link to understand EBV-induced B cell survival.


1993 ◽  
Vol 100 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Riccardo Dolcetti ◽  
Antonino Carbone ◽  
Vittorina Zagonel ◽  
Valli De Re ◽  
Annunziata Gloghini ◽  
...  

Virology ◽  
2001 ◽  
Vol 289 (2) ◽  
pp. 192-207 ◽  
Author(s):  
Christopher W. Dawson ◽  
Juliet H. George ◽  
Sarah M.S. Blake ◽  
Richard Longnecker ◽  
Lawrence S. Young

Sign in / Sign up

Export Citation Format

Share Document