scholarly journals Regulation of Human Immunodeficiency Virus Type 1 Gene Transcription by Nuclear Receptors in Human Brain Cells

1996 ◽  
Vol 271 (37) ◽  
pp. 22895-22900 ◽  
Author(s):  
Bassel E. Sawaya ◽  
Olivier Rohr ◽  
Dominique Aunis ◽  
Evelyne Schaeffer
1999 ◽  
Vol 67 (3) ◽  
pp. 257-261 ◽  
Author(s):  
James R. Lokensgard ◽  
Genya Gekker ◽  
Shuxian Hu ◽  
Chun C. Chao ◽  
Margaret Simpson ◽  
...  

2004 ◽  
Vol 78 (14) ◽  
pp. 7319-7328 ◽  
Author(s):  
Diane M. P. Lawrence ◽  
Linda C. Durham ◽  
Lynnae Schwartz ◽  
Pankaj Seth ◽  
Dragan Maric ◽  
...  

ABSTRACT Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-α). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-α stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/106 cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.


2000 ◽  
Vol 74 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Christian Schwartz ◽  
Philippe Catez ◽  
Olivier Rohr ◽  
Dominique Lecestre ◽  
Dominique Aunis ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects the central nervous system (CNS) and plays a direct role in the pathogenesis of AIDS dementia. However, mechanisms underlying HIV-1 gene expression in the CNS are poorly understood. The importance of CCAAT/enhancer binding proteins (C/EBP) for HIV-1 expression in cells of the immune system has been recently reported. In this study, we have examined the role and the molecular mechanisms by which proteins of the C/EBP family regulate HIV-1 gene transcription in human brain cells. We found that NF-IL6 acts as a potent activator of the long terminal repeat (LTR)-driven transcription in microglial and oligodendroglioma cells. In contrast, C/EBPγ inhibits NF-IL6-induced activation. Consistent with previous data, our transient expression results show cell-type-specific NF-IL6-mediated transactivation. In glial cells, full activation needs the presence of the C/EBP binding sites; however, NF-IL6 is still able to function via the minimal −40/+80 region. In microglial cells, C/EBP sites are not essential, since NF-IL6 acts through the −68/+80 LTR region, containing two binding sites for the transcription factor Sp1. Moreover, we show that functional interactions between NF-IL6 and Sp1 lead to synergistic transcriptional activation of the LTR in oligodendroglioma and to mutual repression in microglial cells. We further demonstrate that NF-IL6 physically interacts with the nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF), via its DNA binding domain, in vitro and in cells, which results in mutual transcriptional repression. These findings reveal how the interplay of NF-IL6 and C/EBPγ, together with Sp1 and COUP-TF, regulates HIV-1 gene transcription in brain cells.


Sign in / Sign up

Export Citation Format

Share Document