scholarly journals Human Cytomegalovirus Immediate-Early Protein IE2 Tethers a Transcriptional Repression Domain to p53

1996 ◽  
Vol 271 (7) ◽  
pp. 3534-3540 ◽  
Author(s):  
Hsiu-Lan Tsai ◽  
Guang-Hsiung Kou ◽  
Shan-Chun Chen ◽  
Cheng-Wen Wu ◽  
Young-Sun Lin
2001 ◽  
Vol 75 (22) ◽  
pp. 10683-10695 ◽  
Author(s):  
Yixun Xu ◽  
Jin-Hyun Ahn ◽  
Mingfei Cheng ◽  
Colette M. apRhys ◽  
Chuang-Jiun Chiou ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) major immediate-early protein IE1 is an abundant 72-kDa nuclear phosphoprotein that is thought to play an important role in efficient triggering of the lytic cycle, especially at low multiplicity of infection. The best-known properties of IE1 at present are its transient targeting to punctate promyelocytic leukemia protein (PML)-associated nuclear bodies (PML oncogenic domains [PODs] or nuclear domain 10 [ND10]), with associated displacement of the cellular PML tumor suppressor protein into a diffuse nucleoplasmic form and its association with metaphase chromosomes. Recent studies have shown that the targeting of PML (and associated proteins such as hDaxx) to PODs is dependent on modification of PML by ubiquitin-like protein SUMO-1. In this study, we provide direct evidence that IE1 is also covalently modified by SUMO-1 in both infected and cotransfected cells, as well as in in vitro assays, with up to 30% of the protein representing the covalently conjugated 90-kDa form in stable U373/IE1 cell lines. Lysine 450 was mapped as the major SUMO-1 conjugation site, but a point mutation of this lysine residue in IE1 did not interfere with its targeting to and disruption of the PODs. Surprisingly, unlike PML or IE2, IE1 did not interact with either Ubc9 or SUMO-1 in yeast two-hybrid assays, suggesting that some additional unknown intranuclear cofactors must play a role in IE1 sumoylation. Interestingly, stable expression of either exogenous PML or exogenous Flag-SUMO-1 in U373 cell lines greatly enhanced both the levels and rate of in vivo IE1 sumoylation during HCMV infection. Unlike the disruption of PODs by the herpes simplex virus type 1 IE110(ICP0) protein, the disruption of PODs by HCMV IE1 proved not to involve proteasome-dependent degradation of PML. We also demonstrate here that the 560-amino-acid PML1 isoform functions as a transcriptional repressor when fused to the GAL4 DNA-binding domain and that wild-type IE1 inhibits the repressor function of PML1 in transient cotransfection assays. Furthermore, both IE1(1-346) and IE1(L174P) mutants, which are defective in displacing PML from PODs, failed to inhibit the repression activity of PML1, whereas the sumoylation-negative IE1(K450R) mutant derepressed as efficiently as wild-type IE1. Taken together, our results suggest that proteasome-independent disruption of PODs, but not IE1 sumoylation, is required for efficient IE1 inhibition of PML-mediated transcriptional repression.


2020 ◽  
Author(s):  
Le Wen ◽  
Fei Zhao ◽  
Yong Qiu ◽  
Shuang Cheng ◽  
Jin-Yan Sun ◽  
...  

In the original publication the email addresses of corresponding authors have not been displayed. The correct email addresses of corresponding authors are provided in this correction. Fang-Cheng Li ([email protected]), Fei Hu ([email protected]), Min-Hua Luo ([email protected]).


1993 ◽  
Vol 21 (12) ◽  
pp. 2931-2937 ◽  
Author(s):  
Daniel J. Tenney ◽  
Linda D. Santomenna ◽  
Karyn B. Goudie ◽  
Anamaris M. Colberg-Poley

2002 ◽  
Vol 294 (4) ◽  
pp. 854-863 ◽  
Author(s):  
Zhiyong Yang ◽  
Nawarat Wara-aswapati ◽  
Yasuhiro Yoshida ◽  
Nancy Walker ◽  
Deborah L Galson ◽  
...  

2002 ◽  
Vol 169 (3) ◽  
pp. 1293-1301 ◽  
Author(s):  
Emmanuelle Le Roy ◽  
Michel Baron ◽  
Wolfgang Faigle ◽  
Danièle Clément ◽  
David M. Lewinsohn ◽  
...  

Virology ◽  
2001 ◽  
Vol 279 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Wail A. Hayajneh ◽  
Anamaris M. Colberg-Poley ◽  
Anna Skaletskaya ◽  
Laura M. Bartle ◽  
Marci M. Lesperance ◽  
...  

Virology ◽  
1988 ◽  
Vol 162 (2) ◽  
pp. 478-482 ◽  
Author(s):  
Steven M. Otto ◽  
Glenda Sullivan-Tailyour ◽  
Cheryl L. Malone ◽  
Mark F. Stinski

2007 ◽  
Vol 88 (11) ◽  
pp. 2935-2940 ◽  
Author(s):  
Ian J. Groves ◽  
John H. Sinclair

The cellular protein human Daxx (hDaxx), a component of nuclear domain 10 structures, is known to mediate transcriptional repression of human cytomegalovirus immediate-early (IE) gene expression upon infection of permissive cell types, at least in part, by regulation of chromatin structure around the major IE promoter (MIEP). As it is now clear that differentiation-dependent regulation of the MIEP also plays a pivotal role in the control of latency and reactivation, we asked whether hDaxx-mediated repression is involved in differentiation-dependent MIEP regulation. We show that downregulation of hDaxx by using small interfering RNA technology in undifferentiated NT2D1 cells does not permit expression of viral IE genes, nor does it result in changes in chromatin structure around the MIEP. Viral IE gene expression is only observed upon cellular differentiation, suggesting little involvement of hDaxx in the regulation of the viral MIEP in undifferentiated cells.


Sign in / Sign up

Export Citation Format

Share Document