scholarly journals Amplification of the DNA Repair GeneO6-Methylguanine-DNA Methyltransferase Associated with Resistance to Alkylating Drugs in a Mammalian Cell Line

1997 ◽  
Vol 272 (20) ◽  
pp. 13250-13254 ◽  
Author(s):  
Keizo Tano ◽  
William C. Dunn ◽  
Firouz Darroudi ◽  
Susumu Shiota ◽  
R. Julian Preston ◽  
...  
1992 ◽  
Vol 12 (12) ◽  
pp. 5536-5540
Author(s):  
R J Boorstein ◽  
L N Chiu ◽  
G W Teebor

We isolated a mutant mammalian cell line lacking activity for the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase (HmUra-DNA glycosylase). The mutant was isolated through its resistance to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (HmdUrd). The mutant incorporates HmdUrd into DNA to the same extent as the parent line but, lacking the repair enzyme, does not remove it. The phenotype of the mutant demonstrates that the toxicity of HmdUrd does not result from substitution of thymine in DNA by HmUra but rather from the removal via base excision of large numbers of HmUra residues in DNA. This finding elucidates a novel mechanism of toxicity for a xenobiotic nucleoside. Furthermore, the isolation of this line supports our hypothesis that the enzymatic repairability of HmUra derives not from its formation opposite adenine via the oxidation of thymine, but rather from its formation opposite guanine as a product of the oxidation and subsequent deamination of 5-methylcytosine.


1992 ◽  
Vol 12 (12) ◽  
pp. 5536-5540 ◽  
Author(s):  
R J Boorstein ◽  
L N Chiu ◽  
G W Teebor

We isolated a mutant mammalian cell line lacking activity for the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase (HmUra-DNA glycosylase). The mutant was isolated through its resistance to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (HmdUrd). The mutant incorporates HmdUrd into DNA to the same extent as the parent line but, lacking the repair enzyme, does not remove it. The phenotype of the mutant demonstrates that the toxicity of HmdUrd does not result from substitution of thymine in DNA by HmUra but rather from the removal via base excision of large numbers of HmUra residues in DNA. This finding elucidates a novel mechanism of toxicity for a xenobiotic nucleoside. Furthermore, the isolation of this line supports our hypothesis that the enzymatic repairability of HmUra derives not from its formation opposite adenine via the oxidation of thymine, but rather from its formation opposite guanine as a product of the oxidation and subsequent deamination of 5-methylcytosine.


1992 ◽  
Vol 225 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Pierre Sokoloff ◽  
Marc Andrieux ◽  
Roger Besançon ◽  
Catherine Pilon ◽  
Marie-Pascale Martres ◽  
...  

1994 ◽  
Vol 3 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Rosann A. Farber ◽  
Thomas D. Petes ◽  
Margaret Dominska ◽  
Sarah S. Hudgens ◽  
R.Michael Liskay

1962 ◽  
Vol 17 (4) ◽  
pp. 479 ◽  
Author(s):  
N. Delihas ◽  
M. A. Rich ◽  
M. L. Eidinoff

Author(s):  
Shih-Yu Lee ◽  
I-Chuan Yen ◽  
Jang-Chun Lin ◽  
Min-Chieh Chung ◽  
Wei-Hsiu Liu

Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.


2011 ◽  
Vol 7 (6) ◽  
pp. e1002074 ◽  
Author(s):  
Velia Siciliano ◽  
Filippo Menolascina ◽  
Lucia Marucci ◽  
Chiara Fracassi ◽  
Immacolata Garzilli ◽  
...  

2015 ◽  
Vol 113 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Amanda M. Lewis ◽  
Nicholas R. Abu-Absi ◽  
Michael C. Borys ◽  
Zheng Jian Li

2019 ◽  
Vol 13 (1) ◽  
pp. 36-42 ◽  
Author(s):  
FITHRIYAH SJATHA ◽  
◽  
OKTIVIA CHANDRA MUSTIKA ◽  
ANGKY BUDIANTI ◽  
TJAHJANI MIRAWATI SUDIRO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document