scholarly journals Role of GHF-1 in the Regulation of the Rat Growth Hormone Gene Promoter by Thyroid Hormone and Retinoic Acid Receptors

1998 ◽  
Vol 273 (42) ◽  
pp. 27541-27547 ◽  
Author(s):  
Teresa Palomino ◽  
Domingo Barettino ◽  
Ana Aranda
1992 ◽  
Vol 12 (6) ◽  
pp. 2624-2632
Author(s):  
D Murphy ◽  
K Pardy ◽  
V Seah ◽  
D Carter

In thyroid hormone-depleted rats, the rate of transcription of the growth hormone (GH) gene in the anterior pituitary gland is lower than the rate in euthyroid controls, and there is a corresponding reduction in the abundance of the GH mRNA. Concomitantly, the poly(A) tail of the GH mRNA increases in length. Examination of nuclear RNA from anterior pituitary glands of control and thyroid hormone-depleted rats revealed no difference in the length of pre-mRNAs containing the first and last introns of the GH gene. However, mature nuclear GH RNA is differentially polyadenylated in euthyroid and hypothyroid animals. We suggest that the extent of polyadenylation of the GH transcript is regulated in the cell nucleus concomitant with or subsequent to the splicing of the pre-mRNA. Experiments with anterior pituitary gland explant cultures demonstrated that the GH mRNA from thyroid hormone-depleted rats is more stable than its euthyroid counterpart and that the poly(A) tail may contribute to the differential stability of free GH ribonucleoproteins.


1996 ◽  
Vol 16 (1) ◽  
pp. 318-327 ◽  
Author(s):  
P Garcia-Villalba ◽  
A M Jimenez-Lara ◽  
A Aranda

The thyroid hormone, retinoic acid (RA), and vitamin D regulate gene expression by binding to similar receptors which act as ligand-inducible transcription factors. Incubation of pituitary GH4C1 cells with nanomolar concentrations of vitamin D markedly reduces the response of the rat growth hormone mRNA to thyroid hormone triiodothyronine (T3) and RA. The stimulation of growth hormone gene expression by both ligands is mediated by a common hormone response element (TREGH) present in the 5'-flanking region of the gene, and the inhibition caused by vitamin D is due to transcriptional interference of the vitamin D receptor on this DNA element. No inhibition of the basal promoter activity by the vitamin was observed. The response to T3 and RA of a heterologous promoter containing this element, the palindromic T3- and RA-responsive sequence TREPAL, or a direct repeat of the same motif is also inhibited by vitamin D. In contrast, vitamin D strongly induces the activity of constructs containing a vitamin D response element, and neither T3 nor RA reduces vitamin D-mediated transactivation. Transfection with an expression vector for the retinoid X receptor alpha (RXR alpha) increases transactivation by T3 and RA but does not abolish the inhibition caused by the vitamin. Gel retardation experiments show that the vitamin D receptor (VDR) as a heterodimer with RXR weakly binds to the T3- and RA-responsive elements. Additionally, VDR displaces binding of T3 and RA receptors in a dose-dependent manner. Our data suggest the formation of TR-VDR and RAR-VDR heterodimers with RXR. The fact that the same response element mediates opposite effects of at least four different nuclear receptors provides a greater complexity and flexibility of the transcriptional responses to their ligands.


Nature ◽  
1987 ◽  
Vol 329 (6141) ◽  
pp. 738-741 ◽  
Author(s):  
Christopher K. Glass ◽  
Rodrigo Franco ◽  
Cary Weinberger ◽  
Vivian R. Albert ◽  
Ronald M. Evans ◽  
...  

1987 ◽  
Vol 262 (13) ◽  
pp. 6373-6382 ◽  
Author(s):  
F. Flug ◽  
R.P. Copp ◽  
J. Casanova ◽  
Z.D. Horowitz ◽  
L. Janocko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document