scholarly journals Olf-1, a Neuron-specific Transcription Factor, Can Activate the Herpes Simplex Virus Type 1-Infected Cell Protein 0 Promoter

2000 ◽  
Vol 275 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Laxminarayana R. Devireddy ◽  
Clinton J. Jones
2010 ◽  
Vol 25 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Fu-sen Lin ◽  
Qiong Ding ◽  
Hong Guo ◽  
Alan C. Zheng

2012 ◽  
Vol 93 (3) ◽  
pp. 624-634 ◽  
Author(s):  
Sandra Loret ◽  
Roger Lippé

Herpes simplex virus type 1 (HSV-1) capsids assemble in the nucleus but acquire their teguments from various cellular compartments. Unfortunately, little is known about their exact arrangement and when they coat the newly produced capsids. The complexity of the virions is further highlighted by our recent proteomics analysis that detected the presence of several novel or controversial components in extracellular HSV-1 virions. The present study probes the localization and linkage to the virus particles of some of these incorporated proteins. We confirm the recently reported tight association of infected cell polypeptide (ICP)0 with the capsid and show that this property extends to ICP4. We also confirm our proteomics data and show biochemically that UL7 and UL23 are indeed mature virion tegument components that, unlike ICP0 and ICP4, are salt-extractable. Interestingly, treatment with N-ethylmaleimide, which covalently modifies reduced cysteines, strongly prevented the release of UL7 and UL23 by salts, but did not perturb the interactions of ICP0 and ICP4 with the virus particles. This hitheir at distinct biochemical properties of the virion constituents and the selective implication of reduced cysteines in their organization and dynamics. Finally, the data revealed, by two independent means, the presence of ICP0 and ICP4 on intranuclear capsids, consistent with the possibility that they may at least partially be recruited to the virus particles early on. These findings add significantly to our understanding of HSV-1 virion assembly and to the debate about the incorporation of ICP0 and ICP4 in virus particles.


2005 ◽  
Vol 79 (2) ◽  
pp. 1232-1243 ◽  
Author(s):  
David J. Davido ◽  
William F. von Zagorski ◽  
William S. Lane ◽  
Priscilla A. Schaffer

ABSTRACT The herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein infected-cell protein 0 (ICP0) is a strong and global transactivator of both viral and cellular genes. In a previous study, we reported that ICP0 is highly phosphorylated and contains at least seven distinct phosphorylation signals as determined by phosphotryptic peptide mapping (D. J. Davido et al., J. Virol. 76:1077-1088, 2002). Since phosphorylation affects the activities of many viral regulatory proteins, we sought to determine whether the phosphorylation of ICP0 affects its functions. To address this question, it was first necessary to identify the regions of ICP0 that are phosphorylated. For this purpose, ICP0 was partially purified, and phosphorylation sites were mapped by microcapillary high-pressure liquid chromatography tandem mass spectrometry. Three phosphorylated regions containing 11 putative phosphorylation sites, all within or adjacent to domains important for the transactivating activity of ICP0, were identified. The 11 sites were mutated to alanine as clusters in each of the three regions by site-directed mutagenesis, generating plasmids expressing mutant forms of ICP0: Phos 1 (four mutated sites), Phos 2 (three mutated sites), and Phos 3 (four mutated sites). One-dimensional phosphotryptic peptide analysis confirmed that the phosphorylation state of each Phos mutant form of ICP0 is altered relative to that of wild-type ICP0. In functional assays, the ICP0 phosphorylation site mutations affected the subcellular and subnuclear localization of ICP0, its ability to alter the staining pattern of the nuclear domain 10 (ND10)-associated protein PML, and/or its transactivating activity in Vero cells. Only mutations in Phos 1, however, impaired the ability of ICP0 to complement the replication of an ICP0 null mutant in Vero cells. This study thus suggests that phosphorylation is an important regulator of ICP0 function.


2004 ◽  
Vol 78 (1) ◽  
pp. 399-412 ◽  
Author(s):  
Brent J. Ryckman ◽  
Richard J. Roller

ABSTRACT The herpes simplex virus type 1 (HSV-1) US3 kinase is likely important for primary envelopment of progeny nucleocapsids since it localizes to the nuclear envelope of infected cells and largely determines the phosphorylation state and localization of the necessary primary envelopment factor, the UL34 protein. In HEp-2 cells, the production of infectious US3 null progeny is delayed and decreased relative to that of the parental strain, HSV-1(F). Furthermore, the US3 kinase affects the morphology of primary envelopment such that in its absence, UL34 protein-containing enveloped virions accumulate within membrane-bound vesicles. These vesicles are most often found along the interior periphery of the nucleus and may be derived from the inner nuclear membrane. Since the US3 and UL34 proteins comprise a kinase-substrate pair, a reasonable hypothesis is that the US3 kinase influences these replication parameters by direct phosphorylation of the UL34 protein. For this report, recombinant viruses were constructed to determine the significance of UL34 protein phosphorylation and US3 catalytic activity on UL34 protein localization, single-step growth, and envelopment morphology in both HEp-2 and Vero cells. The data presented suggest that the significance of UL34 phosphorylation is cell type dependent and that efficient viral morphogenesis requires US3-mediated phosphorylation of an infected cell protein other than UL34.


2006 ◽  
Vol 80 (21) ◽  
pp. 10565-10578 ◽  
Author(s):  
Danna Hargett ◽  
Stephen Rice ◽  
Steven L. Bachenheimer

ABSTRACT The ability of herpes simplex virus type 1 (HSV-1) to activate NF-κB has been well documented. Beginning at 3 to 5 h postinfection, HSV-1 induces a robust and persistent nuclear translocation of an NF-κB-dependent (p50/p65 heterodimer) DNA binding activity, as measured by electrophoretic mobility shift assay. Activation requires virus binding and entry, as well as de novo infected-cell protein synthesis, and is accompanied by loss of both IκBα and IκBβ. In this study, we identified loss of IκBα as a marker of NF-κB activation, and infection with mutants with individual immediate-early (IE) regulatory proteins deleted indicated that ICP27 was necessary for IκBα loss. Analysis of both N-terminal and C-terminal mutants of ICP27 identified the region from amino acids 21 to 63 as being necessary for IκBα loss. Additional experiments with mutant viruses with combinations of IE genes deleted revealed that the ICP27-dependent mechanism of NF-κB activation may be augmented by functional ICP4. We also analyzed two additional markers for NF-κB activation, phosphorylation of the p65 subunit on Ser276 and Ser536. Phosphorylation of both serines was induced upon HSV infection and required functional ICP4 and ICP27. Pharmacological inhibitor studies revealed that both IκBα and Ser276 phosphorylation were dependent on Jun N-terminal protein kinase activity, while Ser536 phosphorylation was not affected during inhibitor treatment. These results demonstrate that there are several layers of regulation of NF-κB activation during HSV infection, highlighting the important role that NF-κB may play in infection.


Sign in / Sign up

Export Citation Format

Share Document