scholarly journals Overexpression ofN-Acetylglucosaminyltransferase III Enhances the Epidermal Growth Factor-induced Phosphorylation of ERK in HeLaS3 Cells by Up-regulation of the Internalization Rate of the Receptors

2000 ◽  
Vol 276 (15) ◽  
pp. 11956-11962 ◽  
Author(s):  
Yuichi Sato ◽  
Motoko Takahashi ◽  
Yukinao Shibukawa ◽  
Suresh K. Jain ◽  
Rieko Hamaoka ◽  
...  

N-Acetylglucosaminyltransferase III (GnT-III) is a key enzyme that inhibits the extension ofN-glycans by introducing a bisectingN-acetylglucosamine residue. In this study we investigated the effect of GnT-III on epidermal growth factor (EGF) signaling in HeLaS3 cells. Although the binding of EGF to the epidermal growth factor receptor (EGFR) was decreased in GnT-III transfectants to a level of about 60% of control cells, the EGF-induced activation of extracellular signal-regulated kinase (ERK) in GnT-III transfectants was enhanced to ∼1.4-fold that of the control cells. A binding analysis revealed that only low affinity binding of EGF was decreased in the GnT-III transfectants, whereas high affinity binding, which is considered to be responsible for the downstream signaling, was not altered. EGF-induced autophosphorylation and dimerization of the EGFR in the GnT-III transfectants were the same levels as found in the controls. The internalization rate of EGFR was, however, enhanced in the GnT-III transfectants as judged by the uptake of125I-EGF and Oregon Green-labeled EGF. When the EGFR internalization was delayed by dansylcadaverine, the up-regulation of ERK phosphorylation in GnT-III transfectants was completely suppressed to the same level as control cells. These results suggest that GnT-III overexpression in HeLaS3 cells resulted in an enhancement of EGF-induced ERK phosphorylation at least in part by the up-regulation of the endocytosis of EGFR.

2016 ◽  
Vol 291 (11) ◽  
pp. 5528-5540 ◽  
Author(s):  
Tom Ronan ◽  
Jennifer L. Macdonald-Obermann ◽  
Lorel Huelsmann ◽  
Nicholas J. Bessman ◽  
Kristen M. Naegle ◽  
...  

2001 ◽  
Vol 355 (2) ◽  
pp. 465-472 ◽  
Author(s):  
Adolfo R. ZURITA ◽  
Hugo J. F. MACCIONI ◽  
Jose L. DANIOTTI

The effect of changing the ganglioside composition of Chinese hamster ovary K1 cells on the function of the epidermal growth factor receptor (EGFr) was examined by studying the signalling pathway generated after the binding of epidermal growth factor (EGF) both in cells depleted of glycosphingolipids by inhibiting glucosylceramide synthase activity and in cell lines expressing different gangliosides as the result of stable transfection of appropriate ganglioside glycosyltransferases. After stimulation with EGF, cells depleted of glycolipids showed EGFr phosphorylation and extracellular signal-regulated protein kinase 2 (ERK2) activity as parental cells expressing GM3 [ganglioside nomenclature follows Svennerholm (1963) J. Neurochem. 10, 613-623] or as transfected cells expressing mostly GM2 and GD1a as the result of stable transfection of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase. However, cells stably transfected with CMP-NeuAc:GM3 sialyltransferase and expressing GD3 at the cell surface showed both decreased EGFr phosphorylation and ERK2 activation after stimulation with EGF. Results suggest that changes in the ganglioside composition of cell membranes might be important in the regulation of the EGF signal transduction.


Sign in / Sign up

Export Citation Format

Share Document