scholarly journals Fidelity and Damage Bypass Ability ofSchizosaccharomyces pombeEso1 Protein, Comprised of DNA Polymerase η and Sister Chromatid Cohesion Protein Ctf7

2001 ◽  
Vol 276 (46) ◽  
pp. 42857-42862 ◽  
Author(s):  
Amy C. Madril ◽  
Robert E. Johnson ◽  
M. Todd Washington ◽  
Louise Prakash ◽  
Satya Prakash
2003 ◽  
Vol 23 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Shaune Edwards ◽  
Caroline M. Li ◽  
Daniel L. Levy ◽  
Jessica Brown ◽  
Peter M. Snow ◽  
...  

ABSTRACT The large subunit of Saccharomyces cerevisiae DNA polymerase ε, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase σ (Pol σ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol σ stimulates the polymerase activity of the Pol ε holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol ε, like Pol σ, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5Δ mutants, like trf4Δ mutants, are defective in DNA repair and sister chromatid cohesion.


2000 ◽  
Vol 20 (10) ◽  
pp. 3459-3469 ◽  
Author(s):  
Koichi Tanaka ◽  
Toshihiro Yonekawa ◽  
Yosuke Kawasaki ◽  
Mihoko Kai ◽  
Kanji Furuya ◽  
...  

ABSTRACT Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant namedeso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. Theeso1 + gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G1-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase η of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase η domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 953-964 ◽  
Author(s):  
D P Moore ◽  
W Y Miyazaki ◽  
J E Tomkiel ◽  
T L Orr-Weaver

Abstract We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.


Sign in / Sign up

Export Citation Format

Share Document