scholarly journals Alternative Mitochondrial Electron Transfer as a Novel Strategy for Neuroprotection

2011 ◽  
Vol 286 (18) ◽  
pp. 16504-16515 ◽  
Author(s):  
Yi Wen ◽  
Wenjun Li ◽  
Ethan C. Poteet ◽  
Luokun Xie ◽  
Cong Tan ◽  
...  

Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.

2017 ◽  
Vol 37 (12) ◽  
pp. 3649-3658 ◽  
Author(s):  
Anna Stepanova ◽  
Anja Kahl ◽  
Csaba Konrad ◽  
Vadim Ten ◽  
Anatoly S Starkov ◽  
...  

Ischemic stroke is one of the most prevalent sources of disability in the world. The major brain tissue damage takes place upon the reperfusion of ischemic tissue. Energy failure due to alterations in mitochondrial metabolism and elevated production of reactive oxygen species (ROS) is one of the main causes of brain ischemia-reperfusion (IR) damage. Ischemia resulted in the accumulation of succinate in tissues, which favors the process of reverse electron transfer (RET) when a fraction of electrons derived from succinate is directed to mitochondrial complex I for the reduction of matrix NAD+. We demonstrate that in intact brain mitochondria oxidizing succinate, complex I became damaged and was not able to contribute to the physiological respiration. This process is associated with a decline in ROS release and a dissociation of the enzyme's flavin. This previously undescribed phenomenon represents the major molecular mechanism of injury in stroke and induction of oxidative stress after reperfusion. We also demonstrate that the origin of ROS during RET is flavin of mitochondrial complex I. Our study highlights a novel target for neuroprotection against IR brain injury and provides a sensitive biochemical marker for this process.


Sign in / Sign up

Export Citation Format

Share Document