scholarly journals Hepatitis B Virus X Protein Regulates Hepatic Glucose Homeostasis via Activation of Inducible Nitric Oxide Synthase

2011 ◽  
Vol 286 (34) ◽  
pp. 29872-29881 ◽  
Author(s):  
Hye-Jun Shin ◽  
Young-Ho Park ◽  
Sun-Uk Kim ◽  
Hyung-Bae Moon ◽  
Do Sim Park ◽  
...  
2002 ◽  
Vol 282 (2) ◽  
pp. E386-E394 ◽  
Author(s):  
Hiroki Sugita ◽  
Masao Kaneki ◽  
Eriko Tokunaga ◽  
Michiko Sugita ◽  
Chieko Koike ◽  
...  

The molecular mechanisms underlying endotoxin-induced insulin resistance remain unclear. Endotoxin or lipopolysaccharide (LPS) injection is a potent stimulator of inducible nitric oxide synthase (iNOS). This study in rats, using the specific iNOS inhibitor aminoguanidine, investigated the role of iNOS in endotoxin-induced hyperglycemia and insulin resistance. LPS injection led to hyperglycemia, insulin resistance, and increased iNOS protein expression and activity. Aminoguanidine prevented LPS-induced hyperglycemia without affecting insulin levels or iNOS expression. Aminoguanidine attenuated the LPS-induced insulin resistance, reflected by the requirement for a higher glucose infusion rate to maintain euglycemia during a hyperinsulinemic clamp study. Aminoguanidine completely blocked the LPS-elevated hepatic glucose output and also inhibited LPS-induced increases in hepatic glycogen phosphorylase activities and phospho enolpyruvate carboxykinase (PEPCK) mRNA expression, key enzymes for glycogenolysis and gluconeogenesis, respectively. Thus, these data demonstrate an important role for iNOS in LPS-induced insulin resistance, evidenced by the attenuation of LPS-induced hyperglycemia and reversal of increased hepatic glucose output by aminoguanidine. The protective effect of aminoguanidine on insulin resistance is probably by attenuation of hepatic glucose output via its inhibition of key enzymes for glycogenolysis and gluconeogenesis, including glycogen phosphorylase and PEPCK.


2006 ◽  
Vol 175 (4S) ◽  
pp. 96-96
Author(s):  
Masayoshi Nomura ◽  
Hisae Nishii ◽  
Masato Tsutsui ◽  
Naohiro Fujimoto ◽  
Tetsuro Matsumoto

2020 ◽  
Vol 19 (30) ◽  
pp. 2795-2804 ◽  
Author(s):  
Ricardo Pereira Rodrigues ◽  
Juliana Santa Ardisson ◽  
Rita de Cássia Ribeiro Gonçalves ◽  
Tiago Branquinho Oliveira ◽  
Vinicius Barreto da Silva ◽  
...  

Background: Helicobacter pylori is a gram-negative bacterium related to chronic gastritis, peptic ulcer and gastric carcinoma. During its infection process, promotes excessive inflammatory response, increasing the release of reactive species and inducing the production of pro-inflammatory mediators. Inducible Nitric Oxide Synthase (iNOS) plays a crucial role in the gastric carcinogenesis process and a key mediator of inflammation and host defense systems, which is expressed in macrophages induced by inflammatory stimuli. In chronic diseases such as Helicobacter pylori infections, the overproduction of NO due to the prolonged induction of iNOS is of major concern. Objective: In this sense, the search for potential iNOS inhibitors is a valuable strategy in the overall process of Helicobacter pylori pathogeny. Method: In silico techniques were applied in the search of interesting compounds against Inducible Nitric Oxide Synthase enzyme in a chemical space of natural products and derivatives from the Analyticon Discovery databases. Results: The five compounds with the best iNOS inhibition profile were selected for activity and toxicity predictions. Compound 9 (CAS 88198-99-6) displayed significant potential for iNOS inhibition, forming hydrogen bonds with residues from the active site and an ionic interaction with heme. This compound also displayed good bioavailability and absence of toxicity/or from its probable metabolites. Conclusion: The top-ranked compounds from the virtual screening workflow show promising results regarding the iNOS inhibition profile. The results evidenced the importance of the ionic bonding during docking selection, playing a crucial role in binding and positioning during ligand-target selection for iNOS.


Sign in / Sign up

Export Citation Format

Share Document