hepatic glucose output
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Aalap Verma ◽  
Alexandra Manchel ◽  
Rahul Narayanan ◽  
Jan B. Hoek ◽  
Babatunde A. Ogunnaike ◽  
...  

Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3295
Author(s):  
Tianyu Yang ◽  
Zhiqiang Cheng ◽  
Maocheng Jiang ◽  
Xiaoyu Ma ◽  
Osmond Datsomor ◽  
...  

Histidine (His) is considered to be the first-limiting amino acid (AA) on grass silage-based diets in lactation cows, which correlate positively with lactose yield. The higher glucose requirements of lactating cows can be met through a combination of increased capacity for gluconeogenesis and increased supply of gluconeogenic precursors. However, the effect of His on the expression of gluconeogenic genes in the bovine hepatocytes is less known. Therefore, this study aimed to investigate the regulatory effect of His on the key gluconeogenic genes and glucose output in bovine hepatocytes. The addition of 0.15, 0.6, and 1.2 mM His in a medium significantly enhanced (p < 0.05) the viability of bovine hepatocytes. Remarkably, 1.2 mM His induced profound changes (p < 0.05) in the mRNA level of key genes involved in gluconeogenesis, including PCK1, PCK2, FBP1, and G6PC in vitro. Furthermore, the mRNA expression of PCK1 was significantly elevated (p < 0.05) by the addition of 1.2 mM His at 3, 6, 12, and 24 h of incubation. The hepatic glucose output increased (p < 0.05) linearly with increasing His concentration. These findings indicate that the addition of His may be efficiently converted into glucose via the upregulation of genes related to the gluconeogenic pathway.


2021 ◽  
Vol 14 (8) ◽  
pp. e243468
Author(s):  
Firas Warda ◽  
Angela Richter ◽  
Kent Wehmeier ◽  
Leena Shahla

. We present a case of hypoglycemia in a young patient without diabetes mellitus who presented initially with enlarging neck mass and weight loss, and was found to have aggressive melanoma with metastasis to multiple organs and diffuse lymphadenopathy. He had presented to the emergency room two times with neuroglycopenic symptoms that required admission and intravenous dextrose continuously. Evaluation of hypoglycemia included C-peptide, insulin levels, insulin-like growth factor (IGF) -I and -II, and ß- hydroxybutyrate. Insulin levels were suppressed appropriately during hypoglycemia, however, IGF-II:IGF-I ratio was high, suggesting non-islet tumour induced hypoglycemia. The presence of IGF-II produced by large tumors results in a low hepatic glucose output and increased uptake by skeletal muscle, resulting in hypoglycemia especially in a patient with extremely low appetite such as our patient. Treating the culprit malignancy leads to resolution of hypoglycemia, but corticosteroids have been used to suppress IGF-II levels and alleviate symptoms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Roichman ◽  
S. Elhanati ◽  
M. A. Aon ◽  
I. Abramovich ◽  
A. Di Francesco ◽  
...  

AbstractAging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.


2020 ◽  
Author(s):  
Hamzeh Karimkhanloo ◽  
Stacey N Keenan ◽  
Emily W Sun ◽  
David A Wattchow ◽  
Damien J Keating ◽  
...  

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic beta-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycemic control in mice injected the GLP-1 receptor antagonist exendin (9-39) amide. The effects of CTSS on glycemic control were not retained in high-fat fed mice or db/db mice, despite the preservation of CTSS’ inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycemic control via direct effects on hepatocytes, and that these effects on glycemic control are abrogated in insulin resistant states.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4145 ◽  
Author(s):  
Sonia Marlen Escandón-Rivera ◽  
Rachel Mata ◽  
Adolfo Andrade-Cetto

Like in many developing countries, in Mexico, the use of medicinal plants is a common practice. Based on our own field experience, there are at least 800 plants used for treating diabetes nowadays. Thus, their investigation is essential. In this context, this work aims to provide a comprehensive and critical review of the molecules isolated from Mexican hypoglycemic plants, including their source and target tested. In the last few years, some researchers have focused on the study of Mexican hypoglycemic plants. Most works describe the hypoglycemic effect or the mechanism of action of the whole extract, as well as the phytochemical profile of the tested extract. Herein, we analyzed 85 studies encompassing 40 hypoglycemic plants and 86 active compounds belonging to different classes of natural products: 28 flavonoids, 25 aromatic compounds, other than flavonoids, four steroids, 23 terpenoids, 4 oligosaccharides, and 1 polyalcohol. These compounds have shown to inhibit α-glucosidases, increase insulin secretion levels, increase insulin sensitivity, and block hepatic glucose output. Almost half of these molecules are not common metabolites, with a narrow taxonomic distribution, which makes them more interesting as lead molecules. Altogether, this analysis provides a necessary inventory useful for future testing of these active molecules against different hypoglycemic targets, to get a better insight into the already described mechanisms, and overall, to contribute to the knowledge of Mexican medicinal plants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Gerardo Mata-Torres ◽  
Adolfo Andrade-Cetto ◽  
Fernanda Artemisa Espinoza-Hernández ◽  
René Cárdenas-Vázquez

2020 ◽  
Vol 64 (1) ◽  
pp. 1900728 ◽  
Author(s):  
Shivaprakash Jagalur Mutt ◽  
Ghulam Shere Raza ◽  
Markus J Mäkinen ◽  
Sirkka Keinänen‐Kiukaanniemi ◽  
Marjo‐Riitta Järvelin ◽  
...  

2019 ◽  
Vol 15 (4) ◽  
pp. 328-339 ◽  
Author(s):  
María M. Adeva-Andany ◽  
Eva Rañal-Muíño ◽  
Carlos Fernández-Fernández ◽  
Cristina Pazos-García ◽  
Matilde Vila-Altesor

Background: Both insulin deficiency and insulin resistance due to glucagon secretion cause fasting and postprandial hyperglycemia in patients with diabetes. Introduction: Metformin enhances insulin sensitivity, being used to prevent and treat diabetes, although its mechanism of action remains elusive. Results: Patients with diabetes fail to store glucose as hepatic glycogen via the direct pathway (glycogen synthesis from dietary glucose during the post-prandial period) and via the indirect pathway (glycogen synthesis from “de novo” synthesized glucose) owing to insulin deficiency and glucagoninduced insulin resistance. Depletion of the hepatic glycogen deposit activates gluconeogenesis to replenish the storage via the indirect pathway. Unlike healthy subjects, patients with diabetes experience glycogen cycling due to enhanced gluconeogenesis and failure to store glucose as glycogen. These defects raise hepatic glucose output causing both fasting and post-prandial hyperglycemia. Metformin reduces post-prandial plasma glucose, suggesting that the drug facilitates glucose storage as hepatic glycogen after meals. Replenishment of glycogen store attenuates the accelerated rate of gluconeogenesis and reduces both glycogen cycling and hepatic glucose output. Metformin also reduces fasting hyperglycemia due to declining hepatic glucose production. In addition, metformin reduces plasma insulin concentration in subjects with impaired glucose tolerance and diabetes and decreases the amount of insulin required for metabolic control in patients with diabetes, reflecting improvement of insulin activity. Accordingly, metformin preserves β-cell function in patients with type 2 diabetes. Conclusion: Several mechanisms have been proposed to explain the metabolic effects of metformin, but evidence is not conclusive and the molecular basis of metformin action remains unknown.


Sign in / Sign up

Export Citation Format

Share Document