scholarly journals The Fission Yeast Protein Ker1p Is an Ortholog of RNA Polymerase I Subunit A14 in Saccharomyces cerevisiae and Is Required for Stable Association of Rrn3p and RPA21 in RNA Polymerase I

2005 ◽  
Vol 280 (12) ◽  
pp. 11467-11474 ◽  
Author(s):  
Yukiko Imazawa ◽  
Koji Hisatake ◽  
Hiroshi Mitsuzawa ◽  
Masahito Matsumoto ◽  
Tohru Tsukui ◽  
...  
1993 ◽  
Vol 13 (1) ◽  
pp. 649-658
Author(s):  
W H Lang ◽  
R H Reeder

We have identified a terminator for transcription by RNA polymerase I in the genes coding for rRNA of the yeast Saccharomyces cerevisiae. The terminator is located 108 bp downstream of the 3' end of the mature 25S rRNA and shares several characteristics with previously studied polymerase I terminators in the vertebrates. For example, the yeast terminator is orientation dependent, is inhibited by its own sequence, and forms RNA 3' ends 17 +/- 2 bp upstream of an essential protein binding site. The recognition sequence for binding of the previously cloned REB1 protein (Q. Ju, B. E. Morrow, and J. R. Warner, Mol. Cell. Biol. 10:5226-5234, 1990) is an essential component of the terminator. In addition, the efficiency of termination depends upon sequence context extending at least 12 bp upstream of the REB1 site.


1993 ◽  
Vol 13 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Y Nogi ◽  
R Yano ◽  
J Dodd ◽  
C Carles ◽  
M Nomura

We have previously isolated mutants of Saccharomyces cerevisiae that are primarily defective in transcription of 35S rRNA genes by RNA polymerase I and have identified genes (RRN1 to RRN9) involved in this process. We have now cloned the RRN4 gene by complementation of the temperature-sensitive phenotype of the rrn4-1 mutant and have determined its complete nucleotide sequence. The following results demonstrate that the RRN4 gene encodes the A12.2 subunit of RNA polymerase I. First, RRN4 protein expressed in Escherichia coli reacted with a specific antiserum against A12.2. Second, amino acid sequences of three tryptic peptides obtained from A12.2 were determined, and these sequences are found in the deduced amino acid sequence of the RRN4 protein. The amino acid sequence of the RRN4 protein (A12.2) is similar to that of the RPB9 (B12.6) subunit of yeast RNA polymerase II; the similarity includes the presence of two putative zinc-binding domains. Thus, A12.2 is a homolog of B12.6. We propose to rename the RRN4 gene RPA12. Deletion of RPA12 produces cells that are heat but not cold sensitive for growth. We have found that in such null mutants growing at permissive temperatures, the cellular concentration of A190, the largest subunit of RNA polymerase I, is lower than in the wild type. In addition, the temperature-sensitive phenotype of the rpa12 null mutants can be partially suppressed by RPA190 (the gene for A190) on multicopy plasmids. These results suggest that A12.2 plays a role in the assembly of A190 into a stable polymerase I structure.


1991 ◽  
Vol 11 (2) ◽  
pp. 754-764 ◽  
Author(s):  
R Yano ◽  
M Nomura

The SRP3-1 mutation is an allele-specific suppressor of temperature-sensitive mutations in the largest subunit (A190) of RNA polymerase I from Saccharomyces cerevisiae. Two mutations known to be suppressed by SRP3-1 are in the putative zinc-binding domain of A190. We have cloned the SRP3 gene by using its suppressor activity and determined its complete nucleotide sequence. We conclude from the following evidence that the SRP3 gene encodes the second-largest subunit (A135) of RNA polymerase I. First, the deduced amino acid sequence of the gene product contains several regions with high homology to the corresponding regions of the second-largest subunits of RNA polymerases of various origins, including those of RNA polymerase II and III from S. cerevisiae. Second, the deduced amino acid sequence contains known amino acid sequences of two tryptic peptides from the A135 subunit of RNA polymerase I purified from S. cerevisiae. Finally, a strain was constructed in which transcription of the SRP3 gene was controlled by the inducible GAL7 promoter. When this strain, which can grow on galactose but not on glucose, was shifted from galactose medium to glucose medium, a large decrease in the cellular concentration of A135 was observed by Western blot analysis. We have also identified the specific amino acid alteration responsible for suppression by SRP3-1 and found that it is located within the putative zinc-binding domain conserved among the second-largest subunits of eucaryotic RNA polymerases. From these results, it is suggested that this putative zinc-binding domain is in physical proximity to and interacts with the putative zinc-binding domain of the A190 subunit.


1998 ◽  
Vol 18 (2) ◽  
pp. 665-675 ◽  
Author(s):  
Hsiu-Jung Lo ◽  
Han-Kuei Huang ◽  
Thomas F. Donahue

ABSTRACT The HIS4 gene in Saccharomyces cerevisiaewas put under the transcriptional control of RNA polymerase I to determine the in vivo consequences on mRNA processing and gene expression. This gene, referred to as rhis4, was substituted for the normal HIS4 gene on chromosome III. Therhis4 gene transcribes two mRNAs, of which each initiates at the polymerase (pol) I transcription initiation site. One transcript, rhis4s, is similar in size to the wild-typeHIS4 mRNA. Its 3′ end maps to the HIS4 3′ noncoding region, and it is polyadenylated. The second transcript,rhis4l, is bicistronic. It encodes the HIS4coding region and a second open reading frame, YCL184, that is located downstream of the HIS4 gene and is predicted to be transcribed in the same direction as HIS4 on chromosome III. The 3′ end of rhis4l maps to the predicted 3′ end of the YCL184 gene and is also polyadenylated. Based on in vivo labeling experiments, the rhis4 gene appears to be more actively transcribed than the wild-type HIS4 gene despite the near equivalence of the steady-state levels of mRNAs produced from each gene. This finding indicated that rhis4mRNAs are rapidly degraded, presumably due to the lack of a cap structure at the 5′ end of the mRNA. Consistent with this interpretation, a mutant form of XRN1, which encodes a 5′-3′ exonuclease, was identified as an extragenic suppressor that increases the half-life of rhis4 mRNA, leading to a 10-fold increase in steady-state mRNA levels compared to the wild-typeHIS4 mRNA level. This increase is dependent on pol I transcription. Immunoprecipitation by anticap antiserum suggests that the majority of rhis4 mRNA produced is capless. In addition, we quantitated the level of His4 protein in a rhis4 xrn1Δ genetic background. This analysis indicates that capless mRNA is translated at less than 10% of the level of translation of capped HIS4 mRNA. Our data indicate that polyadenylation of mRNA in yeast occurs despite HIS4 being transcribed by RNA polymerase I, and the 5′ cap confers stability to mRNA and affords the ability of mRNA to be translated efficiently in vivo.


1993 ◽  
Vol 13 (1) ◽  
pp. 649-658 ◽  
Author(s):  
W H Lang ◽  
R H Reeder

We have identified a terminator for transcription by RNA polymerase I in the genes coding for rRNA of the yeast Saccharomyces cerevisiae. The terminator is located 108 bp downstream of the 3' end of the mature 25S rRNA and shares several characteristics with previously studied polymerase I terminators in the vertebrates. For example, the yeast terminator is orientation dependent, is inhibited by its own sequence, and forms RNA 3' ends 17 +/- 2 bp upstream of an essential protein binding site. The recognition sequence for binding of the previously cloned REB1 protein (Q. Ju, B. E. Morrow, and J. R. Warner, Mol. Cell. Biol. 10:5226-5234, 1990) is an essential component of the terminator. In addition, the efficiency of termination depends upon sequence context extending at least 12 bp upstream of the REB1 site.


Sign in / Sign up

Export Citation Format

Share Document