scholarly journals Amino Acid-dependent Transfer RNA Affinity in a Class I Aminoacyl-tRNA Synthetase

2005 ◽  
Vol 280 (25) ◽  
pp. 23966-23977 ◽  
Author(s):  
Nathan T. Uter ◽  
Ita Gruic-Sovulj ◽  
John J. Perona
2003 ◽  
Vol 328 (2) ◽  
pp. 395-408 ◽  
Author(s):  
Timothy L. Bullock ◽  
Nathan Uter ◽  
T. Amar Nissan ◽  
John J. Perona

Author(s):  
Charles W. Carter ◽  
Alex Popinga ◽  
Remco Bouckaert ◽  
Peter R. Wills

AbstractThe provenance of the aminoacyl-tRNA synthetases (aaRS) poses unusually challenging questions because of their role in the emergence and evolution of genetic coding. We investigate evidence about their ancestry from highly curated structure-based multiple sequence alignments of a small “scaffold” that is structurally invariant in all 10 canonical Class I aaRS. Statistically different values of two uncorrelated phylogenetic metrics—residue by residue conservation derived from Clustal and row-by-row cladistic congruence derived from BEAST2—suggest that the Class I scaffold is a mosaic assembled from distinct, successive genetic sources. These data are especially significant in light of: (i) experimental fragmentations of the Class I scaffold into three partitions that retain catalytic activities in proportion to their length; and (ii) multiple sources of evidence that two of these partitions arose from an ancestral Class I aaRS gene encoding a Class II ancestor in frame on the opposite strand. Two additional metrics output by BEAST2 vary in accordance with the presumed functionality endowed by the various modules. The new evidence supplements previous aaRS phylogenies. It identifies a previously characterized 46-residue Class I “protozyme” as preceding the adaptive radiation of the superfamily containing variations of the Rossmann dinucleotide binding fold related to amino acid discrimination, and thus as root of that molecular tree. Such a rooting is consistent with near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved long after the genetic code had been implemented in an RNA world. Further, it establishes a timeline for the growth of coding from a binary amino acid alphabet by pinpointing discontinuous enhancements of aaRS fidelity.Author SummaryPhylogenetic analysis uncovers evolutionary connections between different protein superfamily members. We describe complementary, uncorrelated, phylogenetic metrics that support multiple evolutionary histories for different segments within members of the Class I aminoacyl-tRNA synthetase superfamily. Using a carefully curated 3D crystal structure superposition as the primary source of the multiple sequence alignment substantially reduced dependence of these metrics on empirical amino acid substitution matrices. Two metrics are derived from the amino acid distribution observed in each successive position. A third depends on how individual sequences distribute into phylogenetic tree branches for each of the ten amino acids activated by the superfamily. All metrics confirm that a segment previously identified as an inserted element is, indeed, a more recent acquisition, despite its structural conservation. The residue-by-residue conservation metrics reveal significant co-variation of mutational frequencies between a core segment that forms the amino acid binding site and a neighboring segment derived from the more recent insertion element. We attribute that covariation to the differentiation of superfamily members as evolutionary divergence enhanced amino acid specificity. Finally, evidence that the insertion element is a recent acquisition implies a new branching order for much of the proteome.


2004 ◽  
Vol 271 (4) ◽  
pp. 724-733 ◽  
Author(s):  
Rajat Banerjee ◽  
Daniel Y. Dubois ◽  
Joelle Gauthier ◽  
Sheng-Xiang Lin ◽  
Siddhartha Roy ◽  
...  

1996 ◽  
Vol 15 (8) ◽  
pp. 1983-1991 ◽  
Author(s):  
K. W. Hong ◽  
M. Ibba ◽  
I. Weygand-Durasevic ◽  
M. J. Rogers ◽  
H. U. Thomann ◽  
...  

ChemBioChem ◽  
2014 ◽  
Vol 15 (12) ◽  
pp. 1755-1760 ◽  
Author(s):  
Moritz J. Schmidt ◽  
Annemarie Weber ◽  
Moritz Pott ◽  
Wolfram Welte ◽  
Daniel Summerer

Biochemistry ◽  
1999 ◽  
Vol 38 (51) ◽  
pp. 16898-16903 ◽  
Author(s):  
Mark A. Farrow ◽  
Brian E. Nordin ◽  
Paul Schimmel
Keyword(s):  

2020 ◽  
Vol 117 (16) ◽  
pp. 8900-8911 ◽  
Author(s):  
Yeonjin Kim ◽  
Mark S. Sundrud ◽  
Changqian Zhou ◽  
Maja Edenius ◽  
Davide Zocco ◽  
...  

Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.


Sign in / Sign up

Export Citation Format

Share Document