scholarly journals Identification and Characterization of AIFsh2, a Mitochondrial Apoptosis-inducing Factor (AIF) Isoform with NADH Oxidase Activity

2006 ◽  
Vol 281 (27) ◽  
pp. 18507-18518 ◽  
Author(s):  
Cécile Delettre ◽  
Victor J. Yuste ◽  
Rana S. Moubarak ◽  
Marlène Bras ◽  
Nadine Robert ◽  
...  
2001 ◽  
Vol 276 (19) ◽  
pp. 16391-16398 ◽  
Author(s):  
M. Dolores Miramar ◽  
Paola Costantini ◽  
Luigi Ravagnan ◽  
Ligia M. Saraiva ◽  
Delphine Haouzi ◽  
...  

Archaea ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sherwin Shabdar ◽  
Bukuru Anaclet ◽  
Ana Garcia Castineiras ◽  
Neyissa Desir ◽  
Nicholas Choe ◽  
...  

NADH-dependent persulfide reductase (Npsr) has been proposed to facilitate dissimilatory sulfur respiration by reducing persulfide or sulfane sulfur-containing substrates to H2S. The presence of this gene in the sulfate and thiosulfate-reducing Archaeoglobus fulgidus DSM 4304 and other hyperthermophilic Archaeoglobales appears anomalous, as A. fulgidus is unable to respire S0 and grow in the presence of elemental sulfur. To assess the role of Npsr in the sulfur metabolism of A. fulgidus DSM 4304, the Npsr from A. fulgidus was characterized. AfNpsr is specific for persulfide and polysulfide as substrates in the oxidative half-reaction, exhibiting k cat / K m on the order of 104 M-1 s-1, which is similar to the kinetic parameters observed for hyperthermophilic CoA persulfide reductases. In contrast to the bacterial Npsr, AfNpsr exhibits low disulfide reductase activity with DTNB; however, similar to the bacterial enzymes, it does not show detectable activity with CoA-disulfide, oxidized glutathione, or cystine. The 3.1 Å X-ray structure of AfNpsr reveals access to the tightly bound catalytic CoA, and the active site Cys 42 is restricted by a flexible loop (residues 60-66) that is not seen in the bacterial homologs from Shewanella loihica PV-4 and Bacillus anthracis. Unlike the bacterial enzymes, AfNpsr exhibits NADH oxidase activity and also shows no detectable activity with NADPH. Models suggest steric and electrostatic repulsions of the NADPH 2 ′ -phosphate account for the strong preference for NADH. The presence of Npsr in the nonsulfur-reducing A. fulgidus suggests that the enzyme may offer some protection against S0 or serve in another metabolic role that has yet to be identified.


1980 ◽  
Vol 35 (9-10) ◽  
pp. 702-707 ◽  
Author(s):  
Candadai S. Ramadoss

Abstract The inhibition of the activity of xanthine oxidase by vanadate was strikingly similar to vanadate inhibition of another molybdoprotein nitrate reductase. Although the main catalytic activity of both enzymes was inhibited, the partial NADH oxidase activity associated with these enzymes was stimulated several fold. It appears that the metal ion binds at multiple site in both enzymes. In the absence of any enzymes a combination of vanadium (V) and molybdenum (V) in air was found to oxide NADH rapidly.


2019 ◽  
Vol 119 (2) ◽  
pp. 683-686 ◽  
Author(s):  
Aline Lamien-Meda ◽  
David Leitsch

AbstractThe microaerophilic human parasite Trichomonas vaginalis causes infections in the urogenital tract and is one of the most often sexually transmitted pathogens worldwide. Due to its anaerobic metabolism, it has to quickly remove intracellular oxygen in order to avoid deactivation of essential metabolic enzymes such as oxygen-sensitive pyruvate:ferredoxin oxidoreductase (PFOR). Two major enzyme activities which are responsible for the removal, i.e. reduction, of molecular oxygen have been identified in T. vaginalis flavin reductase, formerly designated NADPH oxidase, which indirectly reduces oxygen to hydrogen peroxide via flavin mononucleotide (FMN), and NADH oxidase which reduces oxygen to water. Flavin reductase has been identified and characterized at the gene level as well as enzymatically, but NADH oxidase has so far only been characterized enzymatically with enzyme isolated from T. vaginalis cell extracts. In this study, we identified NADH oxidase by mass spectrometry after isolation of the enzyme from gel bands positively staining for NADH oxidase activity. In strain C1 (ATCC 30001) which is known to lack NADH oxidase activity completely, the NADH oxidase gene has a deletion at position 1540 of the open reading frame leading to a frame shift and, as a consequence, to premature termination of the encoded polypeptide.


2010 ◽  
Vol 298 (4) ◽  
pp. F1033-F1040 ◽  
Author(s):  
Yuying Liu ◽  
Grant Bledsoe ◽  
Makato Hagiwara ◽  
Zhi-Rong Yang ◽  
Bo Shen ◽  
...  

Levels of tissue kallikrein (TK) are significantly lower in the urine of patients with kidney failure, and TK expression is specifically diminished in rat kidney after recovery from ischemia-reperfusion injury. In this study, we investigated the functional consequence of blocking endogenous TK activity in a rat model of chronic kidney disease. Inhibition of endogenous TK levels for 10 days by neutralizing TK antibody injection in DOCA-salt rats caused a significant increase in blood urea nitrogen and urinary protein levels, and a decrease in creatinine clearance. Kidney sections from anti-TK antibody-treated rats displayed a marked rise in tubular dilation and protein cast accumulation as well as glomerular sclerosis and size. TK blockade also increased inflammatory cell infiltration, myofibroblast and collagen accumulation, and collagen fraction volume. Elevated renal inflammation and fibrosis by anti-TK antibody were associated with increased expression of tumor necrosis factor-α, intercellular adhesion molecule-1, tissue inhibitor of metalloproteinase-2 (TIMP-2), and plasminogen activator inhibitor-1 (PAI-1). Moreover, the detrimental effect of TK blockade resulted in reduced nitric oxide (NO) levels as well as increased serum lipid peroxidation, renal NADH oxidase activity, and superoxide formation. In cultured proximal tubular cells, TK inhibited angiotensin II-induced superoxide production and NADH oxidase activity via NO formation. In addition, TK markedly increased matrix metalloproteinase-2 activity with a parallel reduction of TIMP-2 and PAI-1 synthesis. These findings indicate that endogenous TK has the propensity to preserve kidney structure and function in rats with chronic renal disease by inhibiting oxidative stress and activating matrix degradation pathways.


Sign in / Sign up

Export Citation Format

Share Document