scholarly journals Mutant Presenilin 1 Alters Synaptic Transmission in Cultured Hippocampal Neurons

2006 ◽  
Vol 282 (2) ◽  
pp. 1119-1127 ◽  
Author(s):  
Christina Priller ◽  
Ilse Dewachter ◽  
Neville Vassallo ◽  
Sandra Paluch ◽  
Claudia Pace ◽  
...  
1999 ◽  
Vol 81 (3) ◽  
pp. 1225-1230 ◽  
Author(s):  
Kimmo Jensen ◽  
Morten Skovgaard Jensen ◽  
John D. C. Lambert

Role of presynaptic L-type Ca2+ channels in GABAergic synaptic transmission in cultured hippocampal neurons. Using dual whole cell patch-clamp recordings of monosynaptic GABAergic inhibitory postsynaptic currents (IPSCs) in cultured rat hippocampal neurons, we have previously demonstrated posttetanic potentiation (PTP) of IPSCs. Tetanic stimulation of the GABAergic neuron leads to accumulation of Ca2+ in the presynaptic terminals. This enhances the probability of GABA-vesicle release for up to 1 min, which underlies PTP. In the present study, we have examined the effect of altering the probability of release on PTP of IPSCs. Baclofen (10 μM), which depresses presynaptic Ca2+ entry through N- and P/Q-type voltage-dependent Ca2+ channels (VDCCs), caused a threefold greater enhancement of PTP than did reducing [Ca2+]o to 1.2 mM, which causes a nonspecific reduction in Ca2+ entry. This finding prompted us to investigate whether presynaptic L-type VDCCs contribute to the Ca2+ accumulation in the boutons during spike activity. The L-type VDCC antagonist, nifedipine (10 μM), had no effect on single IPSCs evoked at 0.2 Hz but reduced the PTP evoked by a train of 40 Hz for 2 s by 60%. Another L-type VDCC antagonist, isradipine (5 μM), similarly inhibited PTP by 65%. Both L-type VDCC blockers also depressed IPSCs during the stimulation (i.e., they increased tetanic depression). The L-type VDCC “agonist” (−)BayK 8644 (4 μM) had no effect on PTP evoked by a train of 40 Hz for 2 s, which probably saturated the PTP process, but enhanced PTP evoked by a train of 1 s by 91%. In conclusion, the results indicate that L-type VDCCs do not participate in low-frequency synchronous transmitter release, but contribute to presynaptic Ca2+ accumulation during high-frequency activity. This helps maintain vesicle release during tetanic stimulation and also enhances the probability of transmitter release during the posttetanic period, which is manifest as PTP. Involvement of L-type channels in these processes represents a novel presynaptic regulatory mechanism at fast CNS synapses.


2014 ◽  
Vol 1582 ◽  
pp. 1-11 ◽  
Author(s):  
Shuzhuo Zhang ◽  
Yuelei Jin ◽  
Xiaoyan Liu ◽  
Lujia Yang ◽  
Zhi juan Ge ◽  
...  

1998 ◽  
Vol 10 (6) ◽  
pp. 2129-2142 ◽  
Author(s):  
Alfonso Araque ◽  
Vladimir Parpura ◽  
Rita P. Sanzgiri ◽  
Philip G. Haydon

1999 ◽  
Vol 77 (9) ◽  
pp. 699-706 ◽  
Author(s):  
Alfonso Araque ◽  
Rita P Sanzgiri ◽  
Vladimir Parpura ◽  
Philip G Haydon

The idea that astrocytes simply provide structural and trophic support to neurons has been challenged by recent evidence demonstrating that astrocytes exhibit a form of excitability and communication based on intracellular Ca2+ variations and intercellular Ca2+ waves, which can be initiated by neuronal activity. These astrocyte Ca2+ variations have now been shown to induce glutamate-dependent Ca2+ elevations and slow inward currents in neurons. More recently, it has been demonstrated that synaptic transmission between cultured hippocampal neurons can be directly modulated by astrocytes. We have reported that astrocyte stimulation can increase the frequency of miniature synaptic currents. Furthermore, we also have demonstrated that an elevation in the intracellular Ca2+ in astrocytes induces a reduction in both excitatory and inhibitory evoked synaptic transmission through the activation of selective presynaptic metabotropic glutamate receptors.Key words: astrocyte-neuron signaling, glutamate receptors, calcium waves, neuronal electrical activity, synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document