scholarly journals Potentiation of TRPC5 by Protons

2007 ◽  
Vol 282 (46) ◽  
pp. 33868-33878 ◽  
Author(s):  
Marcus Semtner ◽  
Michael Schaefer ◽  
Olaf Pinkenburg ◽  
Tim D. Plant

Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca2+-permeable cation channels involved in receptor-mediated increases in intracellular Ca2+. TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca2+-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La3+ and Gd3+. This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC50 of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H+ on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H+ or Gd3+ that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H+ indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca2+ entry and depolarization.

2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


2017 ◽  
Vol 312 (1) ◽  
pp. F96-F108 ◽  
Author(s):  
Steven J. Kleene ◽  
Nancy K. Kleene

Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening monogenic renal disease. ADPKD results from mutations in either of two proteins: polycystin-1 (also known as PC1 or PKD1) or transient receptor potential cation channel, subfamily P, member 2 (TRPP2, also known as polycystin-2, PC2, or PKD2). Each of these proteins is expressed in the primary cilium that extends from many renal epithelial cells. Existing evidence suggests that the cilium can promote renal cystogenesis, while PC1 and TRPP2 counter this cystogenic effect. To better understand the function of TRPP2, we investigated its electrophysiological properties in the native ciliary membrane. We recorded directly from the cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin. In one-third of cilia examined, a large-conductance channel was observed. The channel was not permeable to Cl¯ but conducted cations with permeability ratios PK: PCa: PNa of 1:0.55:0.14. The single-channel conductance ranged from 97 pS in typical physiological solutions to 189 pS in symmetrical 145 mM KCl. Open probability of the channel was very sensitive to membrane depolarization or increasing cytoplasmic free Ca2+ in the low micromolar range, with the open probability increasing in either case. Knocking out TRPP2 by CRISPR/Cas9 genome editing eliminated the channel current, establishing it as TRPP2 dependent. Possible mechanisms for activating the TRPP2-dependent channel in the renal primary cilium are discussed.


Author(s):  
Julia Sirés-Campos ◽  
Ana Lambertos ◽  
Cédric Delevoye ◽  
Graça Raposo ◽  
Dorothy C. Bennett ◽  
...  

AbstractMahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III–IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


Sign in / Sign up

Export Citation Format

Share Document