scholarly journals The long noncoding RNA MyHC IIA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype

2020 ◽  
Vol 295 (15) ◽  
pp. 4937-4949 ◽  
Author(s):  
Mingle Dou ◽  
Ying Yao ◽  
Lu Ma ◽  
Xiaoyu Wang ◽  
Xin'e Shi ◽  
...  

Mammalian skeletal muscles comprise different types of muscle fibers, and this muscle fiber heterogeneity is generally characterized by the expression of myosin heavy chain (MyHC) isoforms. A switch in MyHC expression leads to muscle fiber–type transition under various physiological and pathological conditions, but the underlying regulator coordinating the switch of MyHC expression remains largely unknown. Experiments reported in this study revealed the presence of a skeletal muscle–specific antisense transcript generated from the intergenic region between porcine MyHC IIa and IIx and is referred to here as MyHC IIA/X-AS. We found that MyHC IIA/X-AS is identified as a long noncoding RNA (lncRNA) that is strictly expressed in skeletal muscles and is predominantly distributed in the cytoplasm. Genetic analysis disclosed that MyHC IIA/X-AS stimulates cell cycle exit of skeletal satellite cells and their fusion into myotubes. Moreover, we observed that MyHC IIA/X-AS is more enriched in fast-twitch muscle and represses slow-type gene expression and thereby maintains the fast phenotype. Furthermore, we found that MyHC IIA/X-AS acts as a competing endogenous RNA that sponges microRNA-130b (miR-130b) and thereby maintains MyHC IIx expression and the fast fiber type. We also noted that miR-130b was proved to down-regulate MyHC IIx by directly targeting its 3′-UTR. Together, the results of our study uncovered a novel pathway, which revealed that lncRNA derived from the skeletal MyHC cluster could modulate local MyHC expression in trans, highlighting the role of lncRNAs in muscle fiber–type switching.

2014 ◽  
Vol 112 (2) ◽  
pp. 424-429 ◽  
Author(s):  
Nicholas L. Reyes ◽  
Glen B. Banks ◽  
Mark Tsang ◽  
Daciana Margineantu ◽  
Haiwei Gu ◽  
...  

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Silvia Giannattasio ◽  
Giacomo Giacovazzo ◽  
Agnese Bonato ◽  
Carla Caruso ◽  
Siro Luvisetto ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 3334-3343 ◽  
Author(s):  
Qinyang Jiang ◽  
Xiaofang Cheng ◽  
Yueyue Cui ◽  
Qin Xia ◽  
Xueyu Yan ◽  
...  

This study was conducted to investigate the effect and underlying mechanism of Resveratrol (RES) in regulating skeletal muscle fiber-type switching.


Sign in / Sign up

Export Citation Format

Share Document