fiber diameter
Recently Published Documents


TOTAL DOCUMENTS

969
(FIVE YEARS 254)

H-INDEX

52
(FIVE YEARS 7)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Zeman Liu ◽  
Yiqi Wang ◽  
Fei Guo

Fibrous membranes with a nonwoven random structure and a quasi-parallel fibrous structure can be fabricated by the electrospinning technique. The membranes with different structures exhibited different behaviors to a hydraulic flow passing through the membranes. This work presents the effects of the fiber arrangement, fiber diameter, and deformations of the fibers on the hydraulic permeability. The results showed that the hydraulic flow can generate an extrusion pressure which affects the porosity and pore structure of the fibrous membranes. The quasi-parallel fibrous membranes and nonwoven membranes exhibited similar variation tendencies to the change of the experimental variables. However, the quasi-parallel fibrous membranes exhibited a higher sensibility to the change of the hydraulic flow rate. The hydraulic permeability of the quasi-parallel fibrous membranes was further analyzed with packing state models in this work.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoli Yang ◽  
Xue Chen ◽  
Jingyi Zhao ◽  
Wenlu Lv ◽  
Qilu Wu ◽  
...  

Electrospinning has become a popular nanotechnology for the fabrication of tissue engineering scaffolds, which can precisely regulate fiber diameter and microstructure. Herein, we have prepared a three-dimensional polyacrylonitrile (PAN) nanofiber by liquid-assisted electrospinning. The spacing between PAN nanofibers can reach to 15-20 μm, as the uniform internally connected pore structure can be formed, through the regulation of parameters. Furthermore, the chitosan attached to the as-prepared nanofibers gives the material antibacterial effect and increases its biocompatibility. Meanwhile, the special structure of chitosan also provides the possibility for further loading drugs in dressings in the future. This newly developed nanocomposite seems to be highly suitable for wound healing due to its unique properties of biodegradability, biocompatibility, and antimicrobial effectiveness.


2021 ◽  
pp. 004051752110666
Author(s):  
Peng Chen ◽  
Qihong Zhou ◽  
Jun Wang ◽  
Ge Chen

Electrospinning is an efficient and straightforward method for producing thin fibers from various materials. Although such thin fibers have diverse potential applications, the remaining problems with electrospinning are the whipping instability (also known as bending instability) of electrically charged liquid jets of polymer nanofibers and uneven fiber diameter distribution. In this study, we report a novel magnetic lens electrospinning system and discuss the principle of reducing the fiber diameter and width of the whipping circle in this electrospinning process. The effects of three types of electrospinning devices, needle-to-plate, needle-exciting coil-to-plate, and needle-magnetic lens-to-plate types, were studied through numerical simulation to analyze the electrospinning fiber collection state. For the 12 wt% polyacrylonitrile solution, when the applied voltage was 14–20 kV, the feed rate was 0.4–0.7 ml/h, and the current applied to the excitation coil or magnetic lens was 1 A, the experimental results demonstrated that, compared with needle-to-plate-type and needle-exciting coil-to-plate-type electrospinning, needle-magnetic lens-to-plate-type electrospinning produced smaller whipping circles with thinner and more uniform fibers.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1420
Author(s):  
Marwan El Mobadder ◽  
Samir Nammour ◽  
Marlin Ortega ◽  
Kinga Grzech-Leśniak

Despite its significant negative impact on the quality of life, the methods for the management of the inferior alveolar nerve (IAN) injury are still limited. In this case report, the patient did not show any improvement from the day of the iatrogenic accident until 6 months. A significant improvement of the symptoms started to appear only at 6 months when PBMT was applied. A total of 42 sessions of PBMT took place. The application zone included intraoral and extraoral areas. The parameters were: Delivery power of 0.1 W, for 40 s, continuous wave (CW), contact mode, and delivered energy of 4 J. The delivered energy density related to the fiber diameter was 1415 J/cm2. Each treated point was considered to be 1 cm2 of diameter. At the end of the treatment, all of the symptoms disappeared except for an abnormal sensation on touching the mucosa and gingiva of the concerned area. No side effects were noted. This case report shows that PBMT can be a very promising approach for the management of severe cases that are not improving with conventional methods.


2021 ◽  
Vol 7 (6) ◽  
pp. 209-217
Author(s):  
Eduardo Frank ◽  
EN Hick ◽  
MVH Castillo ◽  
Gaut MC ◽  
RH Mamani-Cato

The Minifiber EC (MFEC) is a portable instrument for measuring the diameter of animal fibers. Its accuracy and precision have been estimated but by comparing its measurements with those of laboratory devices that had been calibrated on other devices in turn, not on a direct or primary measure of diameter. This work attempts to test direct measurements by gravimetry, Vernier mini caliper, microscope and the classic microprojector, using a non-deformable, high resistance synthetic fiber (Kevlar) for direct measurement. The MFEC instrument is calibrated with each mean fiber diameter obtained in direct measurements and its results are compared. The conclusions drawn are that it is possible to calibrate the MFEC instrument with direct measurements on Kevlar and measurement accuracy or tolerance of 0.28 microns is obtained. This indicates a very low biased mean fiber diameter measurement by MFEC.


2021 ◽  
pp. 004051752110639
Author(s):  
Ye Qi ◽  
Huiyuan Zhai ◽  
Yaning Sun ◽  
Hongxing Xu ◽  
Shaohua Wu ◽  
...  

Electrospun nanofibrous scaffolds have gained extensive attention in the fields of soft tissue engineering and regenerative medicine. In this study, a series of biodegradable nanofibrous meshes were fabricated by electrospinning poly(ε-caprolactone) (PCL) and poly( p-dioxanone) (PPDO) blends with various mass ratios. All the as-developed PCL/PPDO nanofibrous meshes possessed smooth and highly aligned fiber morphology. The mean fiber diameter was 521.5 ± 76.6 nm for PCL meshes and 485.8 ± 88.9 nm for PPDO meshes, and the mean fiber diameter seemed to present a decreasing tendency with the increasing of the PPDO component. For pure PCL meshes, the contact angle was about 117.5 ± 1.6°, the weight loss ratio was roughly 0.2% after 10 weeks of degradation, and the tensile strength was 41.2 ± 2.3 MPa in the longitudinal direction and 4.2 ± 0.1 MPa in the transverse direction. It was found that the surface hydrophilicity and in vitro degradation properties of PCL/PPDO meshes apparently increased, but the mechanical properties of PCL/PPDO meshes obviously decreased when more PPDO component was introduced. The biological tests showed that 4:1 PCL/PPDO nanofibrous meshes and 1:1 PCL/PPDO nanofibrous meshes could obviously promote the adhesion and proliferation of human adipose derived mesenchymal stem cells more than pure PCL and PPDO meshes and 1:4 PCL/PPDO meshes. The results demonstrated that it is feasible to adjust the surface hydrophilicity, degradation profile, and mechanical properties as well as biological properties of as-obtained nanofibrous meshes by blending PCL and PPDO components. This study provides meaningful reference and guidance for the design and development of PCL/PPDO hybrid nanofibrous scaffolds for soft tissue engineering research and application.


2021 ◽  
Vol 11 (23) ◽  
pp. 11488
Author(s):  
Marlena Drąg

A new computer-aided method to design electrospun, nanofibrous mats was implemented and tested. In this work, the standard nonlinear algebraic model led to the terminal fiber diameter FD being examined in detail. The analysis was performed in terms of numerical feasibility. The study specified the limit value of the axial length scale, parameter χ, that determined valid solutions. The presented approach has vast practical potential (i.e., biomedical applications, air/water purification systems, fire protection and solar industries).


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7426
Author(s):  
Zhaohui Pei ◽  
Keke Lou ◽  
Heyu Kong ◽  
Bangwei Wu ◽  
Xing Wu ◽  
...  

It is now more popular to use basalt fibers in the engineering programs to reinforce the crack resistance of asphalt mixtures. However, research concerning the impact of the basalt fiber diameter on the macro performance of AC-13 mixtures is very limited. Therefore, in this paper, basalt fibers with three diameters, including 7, 13 and 25 μm, were selected to research the influences of fiber diameter on the crack resistance of asphalt mixtures. Different types of crack tests, such as the low temperature trabecular bending test (LTTB), the indirect tensile asphalt cracking test (IDEAL-CT), and the semi-circular bend test (SCB), were conducted to reveal the crack resistance of AC-13 mixtures. The entire cracking process was recorded through the digital image correlation (DIC) technique, and the displacement cloud pictures, strain, average crack propagation rate (V) and fracture toughness (FT) indicators were used to evaluate the crack inhibition action of the fiber diameter on the mixture. The results showed that the incorporation of basalt fiber substantially improved the crack resistance, slowed down the increase of the displacement, and delayed the fracture time. Basalt fiber with a diameter of 7 μm presented the best enhancement capability on the crack resistance of the AC-13 mixture. The flexibility index (FI) of the SCB test showed a good correlation with V and FT values of DIC test results, respectively. These findings provide theoretical advice for the popularization and engineering application of basalt fibers in asphalt pavement.


Author(s):  
Attila Levente Gergely ◽  
József Kántor

Abstract The aim of this work was to investigate the effect of processing parameters of the electrospinning method on the resulting poly (vinylidene fluoride) (PVDF) fiber diameter. A three factorial Box-Behnken experimental design was employed to study the influence of applied voltage, the capillary-to-collector distance and the applied flow rate on the resulting fiber diameter. We successfully prepared bead-free PVDF nanofibers with fiber diameters ranging from 510-1300 nm. The experimental design analysis did not show significant influence of the studied process parameters under the used boundary conditions on the fiber diameter, thus indicating the robustness of the process.


Sign in / Sign up

Export Citation Format

Share Document