scholarly journals Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners

2020 ◽  
Vol 295 (13) ◽  
pp. 4181-4193 ◽  
Author(s):  
Hui Wen Lee ◽  
Prachi Sharma ◽  
Bart J. Janssen ◽  
Revel S. M. Drummond ◽  
Zhiwei Luo ◽  
...  

Strigolactones (SLs) are terpenoid-derived plant hormones that regulate various developmental processes, particularly shoot branching, root development, and leaf senescence. The SL receptor has an unusual mode of action. Upon binding SL, it hydrolyzes the hormone, and then covalently binds one of the hydrolytic products. These initial events enable the SL receptor DAD2 (in petunia) to interact with the F-box protein PhMAX2A of the Skp-Cullin-F-box (SCF) complex and/or a repressor of SL signaling, PhD53A. However, it remains unclear how binding and hydrolysis structurally alters the SL receptor to enable its engagement with signaling partners. Here, we used mutagenesis to alter DAD2 and affect SL hydrolysis or DAD2's ability to interact with its signaling partners. We identified three DAD2 variants whose hydrolytic activity had been separated from the receptor's interactions with PhMAX2A or PhD53A. Two variants, DAD2N242I and DAD2F135A, having substitutions in the core α/β hydrolase-fold domain and the hairpin, exhibited hormone-independent interactions with PhMAX2A and PhD53A, respectively. Conversely, the DAD2D166A variant could not interact with PhMAX2A in the presence of SL, but its interaction with PhD53A remained unaffected. Structural analyses of DAD2N242I and DAD2D166A revealed only small differences compared with the structure of the WT receptor. Results of molecular dynamics simulations of the DAD2N242I structure suggested that increased flexibility is a likely cause for its SL-independent interaction with PhMAX2A. Our results suggest that PhMAX2A and PhD53A have distinct binding sites on the SL receptor and that its flexibility is a major determinant of its interactions with these two downstream regulators.

2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


2019 ◽  
Vol 116 (3) ◽  
pp. 41a
Author(s):  
Nicolas Barbera ◽  
Manuela A. Ayee ◽  
Belinda S. Akpa ◽  
Irena Levitan

2020 ◽  
Vol 53 (3) ◽  
pp. 654-661 ◽  
Author(s):  
Antonija Kuzmanic ◽  
Gregory R. Bowman ◽  
Jordi Juarez-Jimenez ◽  
Julien Michel ◽  
Francesco L. Gervasio

Author(s):  
G. T. Gao ◽  
J. D. Schall ◽  
K. Van Workum ◽  
P. T. Mikulski ◽  
J. A. Harrison

A constant tension and constant temperature molecular dynamics simulation method was used in the calculations of the elastic constants of the nanocomposite systems. The nanocomposite systems contain a core of sp3 diamond structure surrounded by an amorphous carbon network. The simulation results show that the elastic properties of nanocomposites of diamond-like carbons are closely related to the size of the sp3 diamond core; the bigger the core, the larger the elastic constants, and the system becomes more anisotropic.


Sign in / Sign up

Export Citation Format

Share Document