shoot branching
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 50)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Mattias Thelander ◽  
Katarina Landberg ◽  
Arthur Renaud Jim Muller ◽  
Gladys Cloarec ◽  
Nik Cunniffe ◽  
...  

Shoot branching mechanisms where branches arise in association with leaves – referred to as lateral or axillary branching – evolved by convergence in the sporophyte of vascular plants and the gametophyte of bryophytes, and accompanied independent events of plant architectural diversification. Previously, we showed that three hormonal cues, including auxin, have been recruited independently to co-ordinate branch patterning in flowering plant leafy shoots and moss gametophores (Coudert, Palubicki et al., 2015). Moreover, auxin-mediated apical dominance, which relies on local auxin production, has been proposed as a unifying molecular regulatory mechanism of branch development across land plants. Whilst our previous work in the moss Physcomitrium patens has gathered indirect evidence supporting the notion that auxin synthesized in gametophore apices regulates branch formation at a distance, direct genetic evidence for a role of auxin biosynthesis in gametophore branching control is still lacking. Here, we show that gametophore apex decapitation promotes branch emergence through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. Specifically, we identify a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in apical and basal regions of the gametophore, and show that they are essential for branch initiation and outgrowth control. Our results demonstrate that local auxin biosynthesis coordinates branch patterning in moss and thus constitutes a shared and ancient feature of shoot architecture control in land plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liping Zhang ◽  
Menghan Li ◽  
Peng Yan ◽  
Jianyu Fu ◽  
Lan Zhang ◽  
...  

Abstract Background Shoot branching is one of the important agronomic traits affecting yields and quality of tea plant (Camellia sinensis). Cytokinins (CTKs) play critical roles in regulating shoot branching. However, whether and how differently alternative splicing (AS) variant of CTKs-related genes can influence shoot branching of tea plant is still not fully elucidated. Results In this study, five AS variants of CTK biosynthetic gene adenylate isopentenyltransferase (CsA-IPT5) with different 3′ untranslated region (3ˊ UTR) and 5ˊ UTR from tea plant were cloned and investigated for their regulatory effects. Transient expression assays showed that there were significant negative correlations between CsA-IPT5 protein expression, mRNA expression of CsA-IPT5 AS variants and the number of ATTTA motifs, respectively. Shoot branching processes induced by exogenous 6-BA or pruning were studied, where CsA-IPT5 was demonstrated to regulate protein synthesis of CsA-IPT5, as well as the biosynthesis of trans-zeatin (tZ)- and isopentenyladenine (iP)-CTKs, through transcriptionally changing ratios of its five AS variants in these processes. Furthermore, the 3′ UTR AS variant 2 (3AS2) might act as the predominant AS transcript. Conclusions Together, our results indicate that 3AS2 of the CsA-IPT5 gene is potential in regulating shoot branching of tea plant and provides a gene resource for improving the plant-type of woody plants.


2021 ◽  
Vol 289 ◽  
pp. 110370
Author(s):  
Zhuo Min ◽  
Li Chen ◽  
Yang Zhang ◽  
Ziyu Li ◽  
Min Liu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Franziska Fichtner ◽  
Francois F Barbier ◽  
Stephanie C Kerr ◽  
Caitlin Dudley ◽  
Pilar Cubas ◽  
...  

Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis thaliana has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem starts to elongate with the top leaf primordia developing into cauline leaves. Meristems in arabidopsis are initiated in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three arabidopsis ecotypes and several arabidopsis mutants with varied shoot architectures. Our results show that there is no negative correlation between cauline and rosette branch numbers in arabidopsis, demonstrating that there is no trade-off between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number or rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity and temperature. Our data reveal different plasticity in the regulation of branching at rosette and cauline nodes and promote a framework for future branching analyses.


2021 ◽  
Vol 22 (16) ◽  
pp. 8750
Author(s):  
Xia Wang ◽  
Daofeng Liu ◽  
Jie Lin ◽  
Ting Zhu ◽  
Ning Liu ◽  
...  

Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet.


Author(s):  
Xia Wang ◽  
Daofeng Liu ◽  
Jie Lin ◽  
Ting Zhu ◽  
Ning Liu ◽  
...  

Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, in-volved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet.


2021 ◽  
Author(s):  
Stephanie C. Kerr ◽  
Suyash Patil ◽  
Alexandre de Saint Germain ◽  
Jean‐Paul Pillot ◽  
Julie Saffar ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xuehui Zhao ◽  
Binbin Wen ◽  
Chen Li ◽  
Qiuping Tan ◽  
Li Liu ◽  
...  

Shoot branching is an important adaptive trait that determines plant architecture. In a previous study, the Early bud-break 1 (EBB1) gene in peach (Prunus persica var. nectarina) cultivar Zhongyou 4 was transformed into poplar (Populus trichocarpa). PpEBB1-oe poplar showed a more branched phenotype. To understand the potential mechanisms underlying the EBB1-mediated branching, transcriptomic and proteomics analyses were used. The results showed that a large number of differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with light response, sugars, brassinosteroids (BR), and nitrogen metabolism were significantly enriched in PpEBB1-oe poplar. In addition, contents of sugars, BR, and amino acids were measured. Results showed that PpEBB1 significantly promoted the accumulation of fructose, glucose, sucrose, trehalose, and starch. Contents of brassinolide (BL), castasterone (CS), and 6-deoxocathasterone (6-deoxoCS) were all significantly changed with overexpressing PpEBB1. Various types of amino acids were measured and four of them were significantly improved in PpEBB1-oe poplar, including aspartic acid (Asp), arginine (Arg), cysteine (Cys), and tryptohpan (Trp). Taken together, shoot branching is a process controlled by a complex regulatory network, and PpEBB1 may play important roles in this process through the coordinating multiple metabolic pathways involved in shoot branching, including light response, phytohormones, sugars, and nitrogen.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 745
Author(s):  
Youngho Kwon ◽  
Nkulu Rolly Kabange ◽  
Ji-Yun Lee ◽  
So-Myeong Lee ◽  
Jin-Kyung Cha ◽  
...  

Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.


Sign in / Sign up

Export Citation Format

Share Document