Isolation and Molecular Characterization of Thiosulfate-oxidizing Bacteria from an Italian Rice Field Soil

2003 ◽  
Vol 26 (3) ◽  
pp. 445-452 ◽  
Author(s):  
Andrea Graff ◽  
Stephan Stubner
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Akio Tonouchi

A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genusThermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered anincertae sediswithin the class Lecanoromycetes.


1998 ◽  
Vol 21 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Kuk-Jeong Chin ◽  
Frederick A. Rainey ◽  
Peter H. Janssen ◽  
Ralf Conrad

2017 ◽  
Vol 93 (5) ◽  
Author(s):  
Yuriko Takenouchi ◽  
Kazufumi Iwasaki ◽  
Jun Murase

2006 ◽  
Vol 56 (6) ◽  
pp. 1257-1261 ◽  
Author(s):  
Liming Wang ◽  
Ying Huang ◽  
Zhiheng Liu ◽  
Michael Goodfellow ◽  
Carlos Rodríguez

The taxonomic position of ten acidophilic actinomycetes isolated from an acidic rice-field soil was established using a polyphasic approach. 16S rRNA gene sequences determined for the isolates were aligned with corresponding sequences of representatives of the genera Kitasatospora, Streptacidiphilus and Streptomyces and phylogenetic trees were inferred using four tree-making algorithms. The isolates had identical sequences and formed a distinct branch at the periphery of the Streptacidiphilus 16S rRNA gene tree. The chemotaxonomic and morphological properties of representative isolates were consistent with their assignment to the genus Streptacidiphilus. The isolates shared nearly identical phenotypic profiles that readily distinguished them from representatives of the established species of Streptacidiphilus. It is evident from the genotypic and phenotypic data that the isolates form a homogeneous group that corresponds to a novel species in the genus Streptacidiphilus. The name proposed for this new taxon is Streptacidiphilus oryzae sp. nov.; the type strain is strain TH49T (=CGMCC 4.2012T=JCM 13271T).


Sign in / Sign up

Export Citation Format

Share Document