denitrifying bacteria
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 111)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 10 (1) ◽  
pp. 180
Author(s):  
Youwei Zuo ◽  
Huanhuan Qu ◽  
Changying Xia ◽  
Huan Zhang ◽  
Jiahui Zhang ◽  
...  

The uncontrolled invasion of moso bamboo (Phyllostachys pubescens) dramatically alters soil nitrogen cycling and destroys the natural habitat of Alsophila spinulosa. Nevertheless, no clear evidence points out the role of denitrifying bacteria in the invasion of bamboo into the habitat of A. spinulosa. In the present study, we found that low (importance value 0.0008), moderate (0.6551), and high (0.9326) bamboo invasions dramatically altered the underground root biomass of both P. pubescens and A. spinulosa. The root biomass of A. spinulosa was maximal at moderate invasion, indicating that intermediate disturbance might contribute to the growth and survival of the colonized plant. Successful bamboo invasion significantly increased rhizospheric soil available nitrogen content of A. spinulosa, coupled with elevated denitrifying bacterial abundance and diversity. Shewanella, Chitinophaga, and Achromobacter were the primary genera in the three invasions, whereas high bamboo invasion harbored more denitrifying bacteria and higher abundance than moderate and low invasions. Further correlation analysis found that most soil denitrifying bacteria were positively correlated with soil organic matter and available nitrogen but negatively correlated with pH and water content. In addition, our findings illustrated that two denitrifying bacteria, Chitinophaga and Sorangium, might be essential indicators for evaluating the effects of bamboo invasion on the growth of A. spinulosa. Collectively, this study found that moso bamboo invasion could change the nitrogen cycling of colonized habitats through alterations of denitrifying bacteria and provided valuable perspectives for profound recognizing the invasive impacts and mechanisms of bamboo expansion.


Author(s):  
Arnaud Jéglot ◽  
Kirk Matthew Schnorr ◽  
Sebastian Reinhold Sørensen ◽  
Lars Elsgaard

Nitrate removal was enhanced by the addition of isolated and pre-grown psychrotolerant denitrifiers at low temperature (5 °C).


2021 ◽  
Author(s):  
Jing Zhou ◽  
Yong Kong ◽  
Mengmeng Wu ◽  
Fengyue Shu ◽  
Haijun Wang ◽  
...  

Abstract Excessive nitrogen (N) input is an important factor influencing aquatic ecosystems and has received increasing public attention in the past decades. It remains unclear, however, how N input affects the denitrifying bacterial communities that play a key role in regulating N cycles in various ecosystems. To test our hypothesis – that the abundance and biodiversity of denitrifying bacterial communities decrease with increasing N – we compared the abundance and composition of denitrifying bacteria having nitrous oxide reductase gene (nosZ I) from sediments (0-20 cm) in five experimental ponds with different nitrogen fertilization treatment (TN10, TN20, TN30, TN40, TN50) using quantitative PCR and pyrosequencing techniques. We found that: 1) N addition significantly decreased nosZ I gene abundance, 2) the Invsimpson and Shannon indices (reflecting biodiversity) first increased significantly along with the increasing N loading in TN10~TN40 followed by a decrease in TN50, 3) the beta diversity of the nosZ I denitrifier was clustered into three groups along the TN concentration levels: Cluster I (TN50), Cluster II (TN40), and Cluster III (TN10-TN30), 4) the proportions of Alphaproteobacteria and Betaproteobacteria in the high-N treatment (TN50) were significantly lower than in the lower N treatments (TN10-TN30). 5). The TN concentration was the most important factor driving the alteration of denitrifying bacteria assemblages. Our findings shed new light on the response of denitrification-related bacteria to long-term N loading at pond scale and on the response of denitrifying microorganisms to N pollution.


Author(s):  
Liang Qi ◽  
Ling Li ◽  
Lin Yin ◽  
Wen Zhang

Abstract Carbon sources of cellulose plants are the promising materials that enhancing the activities of denitrifying bacteria in the groundwater system. To further verify the denitrification performance of cellulose plants and the main factors of affecting the denitrifying system, six cellulose plants from agricultural wastes (wood chip, corn cob, rice husk, corn straw, wheat straw, and sugar cane) were selected for bioavailable organic matter leaching experiments, carbon denitrification experiments, functional bacteria identification, and analysis experiments. The results show that the extracts of cellulose plants contain a mixed carbon sources system including small molecular organic acids, sugars, nitrogen-containing organic components, and esters. The qPCR results showed that the denitrifying bacteria had obvious advantages compare to anaerobic ammonia-oxidizing bacteria during the stable period; the denitrification experiment showed that each of six cellulose plants removed more than 80% of nitrogen, and the denitrification rates reached 1.00–2.00 mg N cm−3·d−1. The supplement of cellulose plants promotes the metabolism rate of denitrifying bacteria, and the additional denitrifying bacteria have little effect on nitrate removal. In summary, the expected denitrification reaction occurred in the cellulose plant system, which is suitable as a carbon source material for water body nitrogen pollution remediation.


Sign in / Sign up

Export Citation Format

Share Document