Soil fertility decline in the tropics: with case studies on plantations

2005 ◽  
Vol 34 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Alfred E. Hartemink

Plantation agriculture is more than 400 years old and contributes to the regional and national economies in many tropical countries. This paper reviews some of the main environmental issues related to plantation agriculture with perennial crops, including soil erosion, soil fertility decline, pollution, carbon sequestration and biodiversity. Soil erosion and soil fertility decline are of concern in some areas, but in most plantations these are being checked by cover crops and inorganic fertilizer applications. Few studies have been conducted on the issue of carbon sequestration under perennial plantation cropping. Reductions in deforestation yield much greater benefits for a reduction in CO2 emissions than expanding plantation agriculture. The biggest threat to biodiversity is the loss of habitat through expansion of the plantation area. Despite the environmental problems and concerns, this review has shown that crop yields of most perennial crops have increased over time due to improved crop husbandry including high-yielding cultivars and improved soil management. It is likely that more attention will be given to the environmental aspects of plantation cropping due to the increasing environmental awareness in tropical countries.


2015 ◽  
Vol 33 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Juan De la Cruz Jiménez ◽  
Juan Andrés Cardoso ◽  
David Arango-Londoño ◽  
Gerhard Fischer ◽  
Idupulapati Rao

As a consequence of global warming, rainfall is expected to increase in several regions around the world. This, together with poor soil drainage, will result in waterlogged soil conditions. <em>Brachiaria</em> grasses are widely sown in the tropics and, these grasses confront seasonal waterlogged conditions. Several studies have indicated that an increase in nutrient availability could reduce the negative impact of waterlogging. Therefore, an outdoor study was conducted to evaluate the responses of two <em>Brachiaria</em> sp. grasses with contrasting tolerances to waterlogging, <em>B. ruziziensis </em>(sensitive) and <em>B. humidicola</em> (tolerant), with two soil fertility levels. The genotypes were grown with two different soil fertilization levels (high and low) and under well-drained or waterlogged soil conditions for 15 days. The biomass production, chlorophyll content, photosynthetic efficiency, and macro- (N, P, K, Ca, Mg and S) and micronutrient (Fe, Mn, Cu, Zn and B) contents in the shoot tissue were determined. Significant differences in the nutrient content of the genotypes and treatments were found. An increase of redoximorphic elements (Fe and Mn) in the soil solution occurred with the waterlogging. The greater tolerance of <em>B. humidicola</em> to waterlogged conditions might be due to an efficient root system that is able to acquire nutrients (N, P, K) and potentially exclude phytotoxic elements (Fe and Mn) under waterlogged conditions.  A high nutrient availability in the waterlogged soils did not result in an improved tolerance for <em>B. ruziziensis</em>. The greater growth impairment seen in the <em>B. ruziziensis</em> with high soil fertility and waterlogging (as opposed to low soil fertility and waterlogging) was possibly due to an increased concentration of redoximorphic elements under these conditions.


2004 ◽  
Vol 41 (1) ◽  
pp. 15-21 ◽  
Author(s):  
St�phanie Topoliantz ◽  
Jean-Fran�ois Ponge ◽  
Sylvain Ballof

Sign in / Sign up

Export Citation Format

Share Document